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ABSTRACT: Very recently it has been predicted that the far-field
radiative heat transfer between two macroscopic systems can largely
overcome the limit set by Planck’s law if one of their dimensions becomes
much smaller than the thermal wavelength (λTh ≈ 10 μm at room
temperature). To explore the ultimate limit of the far-field violation of
Planck’s law, here we present a theoretical study of the radiative heat
transfer between two-dimensional (2D) materials. We show that the far-
field thermal radiation exchanged by two coplanar systems with a one-
atom-thick geometrical cross section can be more than 7 orders of
magnitude larger than the theoretical limit set by Planck’s law for
blackbodies and can be comparable to the heat transfer of two parallel sheets at the same distance. In particular, we illustrate this
phenomenon with different materials such as graphene, where the radiation can also be tuned by a external gate, and single-layer
black phosphorus. In both cases the far-field radiative heat transfer is dominated by TE-polarized guiding modes, and surface
plasmons play no role. Our predictions provide a new insight into the thermal radiation exchange mechanisms between 2D
materials.

KEYWORDS: radiative heat transfer, 2D materials, super-Planckian, far-field, graphene, black phosphorus

Radiation is, together with convection and conduction, one
of the three basic mechanisms of heat exchange between

bodies.1 The maximum thermal energy that can be transferred
between two objects via radiation is, in principle, set by
Planck’s law for blackbodies,2 which assumes that both of them
are perfect absorbers at all frequencies and that all dimensions
involved in the problem are larger than λTh. However, it is
known that when the separation between two bodies is smaller
than λTh, the radiative heat transfer can be enhanced by orders
of magnitude due to the contribution of evanescent waves.3−7

This phenomenon, known as near-field radiative heat transfer
(NFRHT),3,4 has been confirmed in recent years by several
experiments exploring different geometries, materials, and
distances between the two objects, ranging from micrometers
down to a few nanometers.8−22 On the other hand, Planck’s
law is also expected to fail when objects have dimensions
smaller than λTh, even in the far field. In this case, nothing
prevents, in principle, overcoming the Planckian limit. In fact,
it has been predicted that the far-field thermal emission of a
single object can be super-Planckian,23−26 but in practice this is
very difficult to achieve, and this phenomenon has never been
observed. In the context of radiative heat transfer, which is the
problem that we are interested in, only very recently have we
predicted that the Planckian limit can also be largely surpassed

in the far-field regime,27 i.e., when the separation of the objects
is larger than λTh. In particular, we have shown theoretically
that the far-field radiative heat transfer (FFRHT) between
micrometer-size devices can overcome the blackbody limit by
several orders of magnitude if their thickness is much smaller
than λTh. Moreover, we have shown that the enhancement over
Planck’s law increases monotonically as the device thickness is
reduced,27 which leads us to the fundamental question on the
limits of super-Planckian FFRHT. The goal of this work is to
explore this issue with the help of 2D materials, i.e., with
materials with a one-atom-thick geometrical cross section,
which constitutes the ultimate limit of thin systems.
2D materials have been extensively studied in recent years in

the context of radiative heat transfer. In particular, several
works have taken advantage of the near-field density of
photonic states in these systems to modify the characteristics
of emitters in a wide variety of scenarios. Most of the
theoretical work in the case of graphene has focused on the
possibility to tune and enhance the NFRHT mediated by the
surface plasmon−polaritons sustained by this material.28,29 For
instance, it has been predicted that the NFRHT between polar
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dielectrics can be boosted by placing a graphene layer on
top.30−32 This prediction has been confirmed experimentally.33

Other studies have proposed periodic graphene ribbon arrays
to induce hyperbolic modes and thus further enhance the
NFRHT between 2D systems.34 The NFRHT between
graphene nanodisks has also been studied,35 and the analysis
of the time scales of radiative heat transfer in this setup
suggests that this process is ultrafast.36 Let us also mention that
the near-field thermal conductance between Dirac 2D
materials scales as the inverse of the distance between two
flakes.37 However, and despite all these recent advances,
FFRHT between 2D materials remains unexplored. As
explained above, 2D materials constitute ideal systems in
which one can explore the ultimate limit of the violation of
Planck’s law in the far-field regime. Moreover, from an applied
viewpoint, understanding the absorption and emission of
radiation in 2D materials is key to properly characterize their
thermal properties and harness their unique mechanical and
electronic features.38 For these reasons, we present in this work
a theoretical study of the FFRHT between systems with a one-
atom-thick geometrical cross section. In particular, we
demonstrate that the FFRHT between sheets of 2D materials
like graphene or single-layer black phosphorus can overcome
the Planckian limit by more than 7 orders of magnitude.
Moreover, we show that, contrary to the known NFRHT
mechanism, surface plasmon−polaritons play no role in this
case, and this remarkable heat transfer is instead dominated by
TE-polarized guiding modes.

■ RESULTS AND DISCUSSION
Let us start by analyzing the FFRHT between two coplanar
graphene sheets. This system is schematically represented in
Figure 1a. In this case, two identical graphene sheets at

temperatures T1 and T2 (T1 < T2) are separated by a gap d.
The length of the flakes is denoted by Lz, and, for simplicity,
we shall assume that they are infinitely wide in the x-direction
(Lx → ∞). Notice that, as shown in Figure 1a, both flakes are
coplanar, and thus, for the radiative problem they constitute
systems with a one-atom-thick geometrical cross section. In
order to compute the power exchanged in the form of thermal
radiation between these 2D systems, we make use of the theory
of fluctuational electrodynamics.4,5 In this theory, the material
properties enter via the dielectric function, which in the
graphene case can be determined from the electrical
conductivity.39 The 2D conductivity of graphene, σ2D

graphene,
calculated within the random phase approximation can be
expressed in terms of the chemical potential (μ), temperature
(T), and scattering energy ( s)

40

2D
graphene

intra interσ σ σ= + (1)

where the intraband and the interband contributions are given
by
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with Ω = ℏω/μ, /sγ μ= , and t = kBT/μ. In Figure 1b we
show the normalized 2D conductivity of graphene, in units of
σ0 = e2/2πℏ, for T = 300 K, 10s

4= − eV, and different values
of the chemical potential. As one can see, graphene resembles a
Drude metal in the infrared regime whose metallic character
increases with the chemical potential. Let us remark that the
value chosen in this case for s corresponds to a graphene
sheet with a very large relaxation time, / sτ = ℏ , which is
normally the desired scenario in the field of graphene
plasmonics.41 We will show below that the opposite limit is
indeed more favorable for the absorption and emission of
radiation between 2D materials.
In order to calculate the FFRHT, we make use of a result

derived in a recent work27 with the help of a thermal discrete
dipole approximation.42 This result establishes a connection
between the FFRHT between two objects and their absorption
efficiencies, i.e., their absorption cross sections divided by their
geometrical cross sections. Assuming that a sheet of a 2D
material can be modeled as a parallelepiped (see below), this
result indicates that the radiative power exchanged between
two identical flakes at temperatures T1 and T2 and separated by
a gap d much larger than both λTh and their characteristic
dimensions is given by27
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where A is the geometrical cross section of the bodies and F12
= δ/2d is the geometrical view factor,1 where δ is the geometric
thickness of the 2D material. On the other hand, QTM,TE(ω) is
the frequency-dependent absorption efficiency for a plane wave
with normal incidence and transverse magnetic (TM) or

Figure 1. (a) Schematics of the FFRHT between two identical
graphene flakes. The flakes have dimensions Lx × Lz, are separated by
a gap d, and are held at temperatures T1 and T2, respectively. (b) Real
(solid lines) and imaginary (dashed lines) part of the normalized
conductivity for T = 300 K, 10s

4= − eV, and for different chemical
potentials (μ), as indicated in the legend of panel (c). (c) Frequency-
dependent absorption efficiency for a plane wave with transverse
electric polarization (QTE(ω)) and normal incidence into a graphene
sheet with length Lz = 10 μm, infinite width (see inset), and for
different values of μ (see legend). The solid lines correspond to the
exact numerical results, while the dashed lines correspond to the
results obtained with eq 5.
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transverse electric (TE) polarization, and IBB(ω, T) is the
Planck distribution function, which is given by

I T
c k T

( , )
4 exp( / ) 1BB

2

3 2
B

ω ω
π

ω
ω

= ℏ
ℏ − (4)

where c is the speed of light. The blackbody limit can be
obtained by assuming that the absorption efficiencies
QTM,TE(ω) = 1 for all frequencies. In this case, eq 3 reduces
to the Stefan−Boltzmann law:1 PBB = σAF12(T1

4 − T2
4), where σ

= 5.67 × 10−8 W/(m2 K4). It is worth mentioning that we have
verified the validity of eq 3 to calculate the FFRHT between
2D materials by comparing its results with numerically exact
simulations within the framework of fluctuational electro-
dynamics (Supporting Information, Figure S1).
According to eq 3, QTM,TE(ω) are required to calculate the

FFRHT between two graphene sheets. Since our system is one
atom thick in the y-direction (Figure 1a), a wave impinging
with the electric field pointing in the y-direction does not
generate any current in that direction. Hence, the absorption
cross section of TM plane waves vanishes (QTM(ω) = 0), and
only QTE(ω) contributes to the FFRHT. Note that free-space
propagating waves cannot couple efficiently to surface
plasmons in graphene, which lie far outside the light line,
due to the large mismatch in in-plane momentum. We have
calculated this efficiency using COMSOL MULTIPHYSICS,
where we have modeled our system as a 3D parallelepiped with
an effective dielectric constant39 (see Supporting Information).
In accordance with experimental evidence, we have taken
δgraphene = 0.37 nm for the thickness of a graphene monolayer.43

Figure 1c shows QTE(ω) as a function of the radiation
frequency ω (solid lines) for different chemical potentials and
for a scattering energy 10s

4= − eV. Notice that the
absorption cross section is much larger than the geometrical
one in the infrared frequency range, which shows that
graphene is a very efficient broadband infrared absorber,
even when the incident vector of the plane wave is parallel to
the graphene sheet (see inset in Figure 1c). Notice also that
QTE(ω) increases for decreasing frequency, which is due to the
increase of losses in the system (see Figure 1b).
In order to get further insight into the remarkable radiation

absorption of a graphene flake, we have derived an analytical
expression for QTE(ω) in eq 3 as follows. The radiation

absorption can be understood as a two-step process. First, a TE
plane wave impinges in the graphene flake (see inset in Figure
1c) and couples to the guiding modes of our system. Second,
these modes propagate along the z-direction, while being
progressively absorbed by the graphene flake. Taking both
processes into account (Supporting Information, Figure S2),
the frequency-dependent absorption efficiency can be ex-
pressed as

Q
k

( )
1 e

Im

k L

y
TE
an

2Im

,v

z z

ω
δ

= −
{ }

− { }

(5)

Here, kz corresponds to the z-component of the graphene
mode wave vector and ky,v represents the y-component of the
same wave vector in a vacuum. In eq 5, the factor 1/Im{ky,v} is
related to the coupling between the plane wave and the EM
mode of the system, while the numerator (1 − e−2Im{kz}Lz)
accounts for the absorption of the guiding wave along the
graphene sheet. We have computed the dispersion relation of
the leaky guided modes of our system by using standard
dielectric waveguide theory44 (see Supporting Information). In
Figure 1c we show the analytical results for the absorption
efficiency QTE

an (ω) (dashed lines), and, as one can see, there is
an excellent agreement with the exact numerical simulations.
This agreement allows us to conclude that the extraordinary
absorption efficiency of a graphene flake in this configuration is
due to the fact that it behaves as a lossy waveguide that absorbs
the radiation via the excitation of guided TE modes. In
particular, because of the low impedance mismatch, the
incident radiation is efficiently coupled into guided modes and
is eventually absorbed.
Once QTE(ω) is known, we can use eq 3 to calculate the

FFRHT between two graphene flakes in the coplanar
configuration (see Figure 1a). We shall characterize the
FFRHT in terms of the room-temperature linear heat
conductance per unit of length, Gth = P/(LxΔT), in the limit
ΔT = (T2 − T1)→ 0. Figure 2a shows the spectral Gth, i.e., the
conductance per unit of frequency, for two graphene sheets of
length Lz = 10 μm, 10s

4= − eV, and a gap d = 1 mm. It can
be observed that the system exhibits a broadband FFRHT
spectrum, similar to the FFRHT between metals.3 The
conductance peak appears at ω = 9 × 1010 rad/s for all
chemical potentials. This maximum originates from the

Figure 2. (a) Spectral thermal conductance as a function of the radiation frequency for a system composed of two graphene flakes of length Lz = 10
μm, 10s

4= − eV, and a gap d = 1 mm (see upper inset). The different lines correspond to distinct chemical potentials (see legend in (b)), and the
temperature is 300 K. The lower inset shows the corresponding absorption efficiency QTE(ω) in the same frequency range as the spectral
conductance. (b) Total thermal conductance Gth, normalized by the blackbody results, for the same system as in panel (a) and plotted as a function
of Lz for different chemical potentials. The dashed orange line is proportional to Lz

2. The vertical dotted line indicates approximately the length at
which the conductance for μ = 0.5 eV starts to saturate (see text). Let us stress that these normalized results do not depend on the gap as long as d
is much larger than the thermal wavelength.
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convolution of the Planck’s distribution function (IBB) and
QTE(ω); see eq 3. Notice, however, that the magnitude of Gth
does increase with μ and can be tuned by a factor of 2.5
between μ = 0.2 eV and μ = 0.5 eV.
Let us turn now to the analysis of the total thermal

conductance and its comparison with the predictions of
Planck’s law for blackbodies. Figure 2b shows Gth normalized
by the corresponding blackbody result (GBB = 4σδF12T

3) as a
function of the flake’s length Lz. Let us stress that in all the
calculations of the thermal conductance based on eq 3, we
have computed the absorption efficiencies numerically with
COMSOL MULTIPHYSICS. As it can be observed, the power
exchanged by the two graphene flakes overcomes Planck’s
results by up to 4 orders of magnitude for a length of 100 μm.
The reason for this huge enhancement can be understood with
the help of Figure 1c, where it is shown that the absorption
efficiency of a graphene sheet reaches values much larger than
1 for a broad range of infrared frequencies, accessible at room
temperature. Besides, the normalized Gth increases with Lz
simply because the absorption and emission of radiation in the
graphene flakes increase with this length. It can be also seen in
Figure 2b that for small lengths the normalized Gth is
proportional to Lz

2, which can be understood as follows. The
efficiency QTE(ω) is proportional to (1 − e−2Im{kz}Lz), according
to eq 5. In the limit in which Im{kz}Lz ≪ 1, QTE(ω) is simply
proportional to Lz. Thus, from eq 3, it is obvious that Gth ∝ Lz

2

for short graphene flakes, as verified in Figure 2b. In the
opposite limit, i.e., when the length of the flake becomes very
large, the normalized thermal conductance tends to saturate;
see Figure 2b. In this case, the analysis of even longer flakes
becomes very challenging from the numerical point of view.
The transition between these two regimes occurs approx-
imately at Lz ≈ 1/(2Im{kz}), which is indicated by a vertical
dotted line in Figure 2b for μ = 0.5 eV. This length was

calculated for the frequency at which the spectral conductance
reaches its maximum (ω = 1.2 × 1011 rad/s).
We have shown that the FFRHT between graphene sheets

can overcome the Planckian limit by more than 4 orders of
magnitude. However, our analysis also suggests that the
thermal conductance could be further enhanced by increasing
the intrinsic losses in the graphene sheets. To test this idea, we
have calculated the FFRHT for these graphene sheets
assuming a larger value for the scattering energy s. Figure
3a shows the normalized 2D conductivity of graphene for

0.01s = eV, i.e., 2 orders of magnitude larger than in the
examples above. The corresponding results for the absorption
efficiency QTE(ω) are displayed in Figure 3b. The absorption
cross section is again orders of magnitude larger than the
geometrical one, and, more importantly, it is also higher than
in the previous case. Figure 3c shows the spectral Gth for Lz =
10 μm, 0.01s = eV, and a gap d = 1 mm. In this case the
maximum of the spectral Gth is strongly blue-shifted (ω = 1.3 ×
1013 rad/s), and the relevant frequencies for the FFRHT are
also higher. The reason for this blue-shift is that QTE(ω)
adopts larger values at frequencies that have a better overlap
with Planck distribution function at room temperature. As a
consequence, the total thermal conductance Gth is much higher
in this case, as we illustrate in Figure 3d. Notice that in this
case the Planckian limit can be overcome by more than 7
orders of magnitude. Thus, we see here that the graphene with
a high density of impurities (i.e., with low mobility), which is
normally dismissed for optoelectronic and plasmonic applica-
tions, is more efficient regarding thermal emission and
absorption.
For the sake of comparison, we have also analyzed the

FFRHT between two graphene sheets of the same dimensions
as those of Figure 3c (μ = 0.3 eV) now parallel to each other

Figure 3. (a) Real (solid lines) and imaginary (dashed lines) part of the normalized conductivity of graphene for T = 300 K and 0.01s = eV, for
different chemical potentials (μ). (b) Frequency-dependent absorption efficiency for a plane wave with transverse electric polarization (QTE(ω))
and normal incidence into a graphene sheet with length Lz = 10 μm and infinite width (see inset), for different values of μ. The solid lines
correspond to the exact numerical results, while the dashed lines were obtained with eq 5. (c) Spectral Gth as a function of ω for a system composed
of two graphene flakes of length Lz = 10 μm, 0.01s = eV, and a gap d = 1 mm (see inset). (d) Gth, normalized by the blackbody results, for the
same system and plotted as a function of Lz for different chemical potentials. The dashed orange line is proportional to Lz

2.
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and separated by a distance d along the normal direction. In
that case, the geometrical cross section is 27 000 times larger
than in the coplanar configuration and Planck’s law would thus
predict 27 0002 higher heat transfer efficiency than in the
coplanar case. However, the FFRHT between the graphene
sheets in this case is only 4 times larger, and it does not exhibit
an enhancement over Planck’s law. Indeed, the ratio with the
blackbody results is 1.5 × 10−3. This confirms that the FFRHT
between coplanar sheets is truly remarkable and that its
absolute value is comparable with other setups that have a
much higher geometrical cross section. Moreover, we have
performed additional simulations to verify if such FFRHT
could be measured in a realistic experimental setup. We have
calculated the FFRHT between two graphene sheets with Lx =
20 μm, Lz = 60 μm, μ = 0.5 eV, and 0.01s = eV and
separated by a gap of 20 μm, where the thermal radiation is
already dominated by the far-field contribution.7 The
dimensions chosen for both the graphene sheets and the gap
are within reach of state-of-the-art calorimetric techniques.47,48

In order to compute the FFRHT, we have made use of the
code SCUFF-EM, which implements a fluctuating-surface-
current approach to the radiative heat transfer problem and
provides numerically exact results within the framework of
fluctuational electrodynamics.45,46 The room-temperature
linear heat conductance between the flakes is in this case
1.62 pW/K, which is within the sensitivity of existent
calorimetric techniques.47,48

At this point one may wonder whether the dramatic
violation of Planck’s law discussed above for the case of
graphene may also occur in other 2D materials. To show that
this is actually the case, we now turn to analyze the case of
single-layer black phosphorus (SLBP). We have computed the
FFRHT between two coplanar SLBP sheets (see Figure 1a).

The distinctive steps of the atomic structure of SLBP are in our
case placed along the z-direction. We have modeled the
dielectric properties of a black phosphorus monolayer in an
analogous way to graphene, and its 2D conductivity has been
taken from previous studies.49 Both the real (solid line) and
the imaginary (dashed line) part of the conductivity of SLBP
along the x-direction are plotted in Figure 4a for T = 300 K,

0.01s = eV, and two different electron dopings n = 5 × 1013

cm−2 and n = 1014 cm−2. The parameters chosen represent
realistic SLBP samples.50 Figure 4b shows QTE(ω) calculated
numerically (solid lines) with COMSOL MULTIPHYSICS
(see Supporting Information) for a SLBP sheet with Lz = 10
μm (see inset of Figure 4b) and both doping values. The SLBP
absorption efficiency exhibits very similar characteristics to
those of low-quality graphene, as both of them have similar
dielectric functions for infrared frequencies. Moreover, QTE

an (ω)
(dashed lines) shows again an excellent agreement with the
exact numerical simulations. As for graphene, we have used the
results for QTE(ω) in combination with eq 3 to describe the
FFRHT. The spectral conductance of black phosphorus
monolayers separated by 1 mm is plotted in Figure 4c, while
the normalized total thermal conductance as a function of the
length Lz is shown in Figure 4d. Notice that in this case the
FFRHT can be larger than the corresponding result calculated
from Planck’s law by almost 7 orders of magnitude, showing
that this enhancement is not exclusive of graphene, but can
also occur in other 2D materials such as SLBP.
In summary, we have presented a theoretical analysis of the

FFRHT between 2D materials, graphene, and single-layer
black phosphorus, in a coplanar configuration. We have shown
that the relevant absorption cross section of flakes of these
materials can be orders of magnitude larger than their atomic-
sized geometrical cross section. We have also shown that this

Figure 4. (a) Real (solid lines) and imaginary (dashed lines) part of the normalized conductivity of single-layer black phosphorus for T = 300 K
and 0.01s = eV, for two different dopings (n). (b) Frequency-dependent absorption efficiency for a plane wave with transverse electric
polarization (QTE(ω)) and normal incidence into an SLBP sheet with length Lz = 10 μm and infinite width (see inset). The solid lines correspond
to the exact numerical results, while the dashed lines were obtained with eq 5. (c) Spectral Gth as a function of ω for a system composed of two
SLBP flakes of length Lz = 10 μm separated by a gap d = 1 mm (see inset). (d) Thermal conductance Gth, normalized by the blackbody results, for
the same system as in panel (c) and plotted as a function of Lz, for two different dopings. The dashed orange line is proportional to Lz

2.
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extraordinary absorption efficiency makes the FFRHT between
flakes of these materials more than 7 orders of magnitude
larger than the limit set by Planck’s law, which constitutes the
ultimate violation of this law in the far-field regime. Finally, we
have shown that the novel mechanism responsible for this
FFRHT involves the propagation properties of TE-polarized
guiding modes in these materials, modes that are usually
irrelevant in the context of plasmonic or optoelectronic
applications.
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