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ABSTRACT
Strong coupling of quantum emitters with confined electromagnetic modes of nanophotonic structures may be used to change optical, chem-
ical, and transport properties of materials, with significant theoretical effort invested toward a better understanding of this phenomenon.
However, a full theoretical description of both matter and light is an extremely challenging task. Typical theoretical approaches sim-
plify the description of the photonic environment by describing it as a single mode or few modes. While this approximation is accurate
in some cases, it breaks down strongly in complex environments, such as within plasmonic nanocavities, and the electromagnetic envi-
ronment must be fully taken into account. This requires the quantum description of a continuum of bosonic modes, a problem that is
computationally hard. We here investigate a compromise where the quantum character of light is taken into account at modest com-
putational cost. To do so, we focus on a quantum emitter that interacts with an arbitrary photonic spectral density and employ the
cumulant, or cluster, expansion method to the Heisenberg equations of motion up to first, second, and third order. We benchmark the
method by comparing it with exact solutions for specific situations and show that it can accurately represent dynamics for many parameter
ranges.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5138937., s

I. INTRODUCTION

Light–matter interaction is of paramount importance for
unraveling the laws of nature, and its deep understanding allows
us to control and manipulate physical and chemical systems. In
particular, one can modify the properties of a quantum emitter
simply by changing its electromagnetic environment, for example,
by enclosing it within an optical cavity. This may give rise to a
change in the decay rate for spontaneous emission in the weak cou-
pling regime, the so-called Purcell effect,1 or to the appearance of
hybrid light–matter states, the so-called polaritons, in the strong-
coupling regime.2–5 Over the last few decades, it has been shown
that strong light–matter coupling can be achieved using a large
variety of physical implementations as the “cavity” that provides
the electromagnetic field confinement. These include Fabry–Perot

cavities consisting of two mirrors,5 propagating surface plasmon
polaritons,6 plasmonic hole,7 and nanoparticle arrays,8 isolated plas-
monic nanoparticles,9 and nanoparticle-on-mirror geometries,10,11
as well as hybrid cavities combining plasmonic and dielectric mate-
rials.12–14 In many of these systems, the electromagnetic field modes
are not well-described by isolated lossy cavity modes, and a cor-
rect treatment demands theoretical approaches that are able to deal
with the complexity of the electromagnetic field modes and their
spectrum.

In principle, to treat the problem of light–matter interaction,
one can rely on the most general theory that describes light and
matter on equal footing, i.e., quantum electrodynamics (QED).15
However, treating all light and matter degrees of freedom in the sys-
tems described above in a quantummechanical way is an intractable
problem and approximations must be performed. One of the most
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common assumptions in quantum optics is to consider that the
material system of interest only interacts with a single mode of the
electromagnetic (EM) field, with the interaction typically treated
within the dipole approximation. This leads to the Rabi,16 Dicke,17
Jaynes–Cummings,18 and Tavis–Cummings19 models depending
on the number of treated emitters and the approximations per-
formed,20–24 all of which have been successfully used and extended
to describe a wide variety of experimental implementations. Nev-
ertheless, as discussed above, the simplification to a single (or few)
quantized light modes in the treatment of the electromagnetic field
is not always a good approximation.

In some cases, the quantum character of the electromagnetic
field may be neglected and it is possible to rely on Maxwell’s equa-
tions. In such mean-field approaches, the classical EM field is then
coupled to the dipole of the quantum emitters and the coupled
Maxwell–Schrödinger or Maxwell–Bloch equations are solved.25,26
This approach, in principle, allows for the description of arbitrary
photonic structures but misses all effects due to the quantization
of the EM field, such as spontaneous emission. Recently, several
groups have extended these approaches to allow for a more complete
description, based on, e.g., an Ehrenfest+Relaxation approach27,28
or cavity quantum electrodynamics with multi-trajectory Ehrenfest
dynamics.29

In cases that a full quantum description is desired, a strat-
egy has to be used to quantize the EM field modes in the pres-
ence of material bodies. This is possible for simple geometries using
a variety of strategies.11,30,31 For systems with a few, but possibly
interfering, resonances, it was recently shown how to quantize the
corresponding quasi-normal modes as lossy cavity modes.13 For
arbitrary material structures, the most general solution is given by
the framework of macroscopic QED,32–35 which was developed in
the last few decades to circumvent the problems that arise when
applying the rules of canonical quantization in the presence of lin-
ear, dispersive, and absorbing materials. Within this framework,
which we use as the basis for our numerical approach below,
the medium-supported electromagnetic field is formally generated
by local bosonic dynamical operators f̂(r,ω) at every point in
space and frequency, with the EM field obtained through a con-
volution of the EM Green’s function. While the sheer number of
formal modes prevents their direct use in a “standard” descrip-
tion, a large number of relevant observables and effects can be
obtained in approaches where these degrees of freedom are inte-
grated out in some sense, with final expressions only depending on
the EM Green’s function after performing a perturbation expansion
or treating few-level emitters approximately as bosonic degrees of
freedom.35–39

Even for the case of nonperturbative interactions between sev-
eral emitters and arbitrary photonic structures, it was realized by
Buhmann and Welsch,40 and later independently by several other
groups,41,42 that a unitary frequency-dependent basis transforma-
tion can be used to transform the local operators f̂(r,ω) to a set of
new modes in such a way that only a single photonic mode interacts
with each emitter at each frequency, with the strength of the inter-
action encoded in the spectral density, J(r, ω) at the position r of the
emitter. We note that one naturally arrives at the same picture by
calculating the local density of EM states and using its relation with
the decay rate and the dyadic Green’s function.43

When the spectral density has a Lorentzian profile, the dynam-
ics can be mapped to the dissipative Rabi model.22,44 Generalizing
this idea, if the spectral density is well approximated as a sum of N
Lorentzians, the dynamics can be fully solved by including N dissi-
pative bosonic modes.11,39,45 However, for arbitrary complex spec-
tral densities, this approximation is not useful. In that case, one
approach is to exploit the tools developed for open quantum sys-
tems,20,21,46 which exactly describe a quantum system coupled to a
continuous “bath” described by a given spectral density. In partic-
ular, if the coupling between the system and the bath is weak, one
can apply the Markov approximation (which assumes that the bath
has “no memory”), such that the EM environment simply intro-
duces a frequency-dependent decay rate (corresponding exactly to
the Purcell effect). When this approximation is not applicable, more
advanced numerical approaches such as tensor network calcula-
tions47,48 or hierarchical equations of motion49 can be employed,
possibly after a chain transformation of the associated Hamilto-
nian.50 Such approaches have been used to study static properties
and dynamics in organic polaritons.51,52 However, these are numer-
ically demanding approaches that require significant computational
resources.

In this work, we explore an intermediate approach that goes
beyond a mean-field description, without trying to obtain a full
quantum description of the coupled emitter–photon system. We
do so by employing the cumulant or cluster expansion method53–55
to treat the interaction of a single quantum emitter with an arbi-
trary photonic spectral density. This method has its roots in the
Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy.55
It relies on the fact that for a system of interacting particles, the
dynamics of the mean value of anN-particle operator depend on the
mean values of N + 1-particle operators. Truncating this descrip-
tion by neglecting operator correlations above some order leads to
a closed set of equations. This method was already applied in the
context of cavity QED,56–59 but a systematic study of the impor-
tance of the different terms appearing in the expansion has not been
provided yet. We here present an extensive study of how different
truncations of the cumulant expansion perform in the computation
of the dynamics of the quantum emitter and EM modes. In particu-
lar, we investigate the effect of truncating the cumulant expansion
at different orders and compare different strategies for perform-
ing these truncations. To benchmark our method, we choose spec-
tral densities for which (almost) exact solutions can be obtained
through the Wigner–Weisskopf (WW) and dissipative Rabi model,
respectively.

II. METHOD
Within the framework of macroscopic QED, the Hamiltonian

that describes the interaction between one emitter and a medium-
assisted electromagnetic field is, within the dipole approximation40
(here and in the following, we use units where �h = 1),

H = �
λ=e,m� dr3 � ∞

0
dω ω f†λ(r,ω)fλ(r,ω) +Hem − �̂ ⋅ E(rA), (1)

where f λ(r,ω) and f †λ (r,ω) are the bosonic annihilation and creation
operators,Hem is the bare-emitter Hamiltonian, �̂ is the dipole oper-
ator of the two-level system, and E(rA) is the electric field operator,
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which is given by a superposition of the bosonic operators f̂λ(r,ω)
with weights determined by the classical Green’s tensor G(rA, r,
ω). As mentioned above, a frequency-dependent unitary trans-
formation of f λ(r, ω) can be performed such that for each fre-
quency, only a single photonic mode a(ω) interacts with the
emitter40 (under the assumption that only a single polarization
direction interacts with the emitter dipole operator). Furthermore,
we here approximate the quantum emitter as a two-level system
described by the Pauli matrices σi (i ∈ {x, y, z}), with transition fre-
quency Ω0 and transition dipole moment �. The Hamiltonian then
becomes

H = � ∞
0

dω ωa†(ω)a(ω) + Ω0

2
σz

+ � ∞
0

dω g(ω)�a†(ω) + a(ω)�σx, (2)

where g(ω) is the coupling between the emitter and the electromag-
netic modes,

g(ω) =��0
π ω2� ⋅ ImG(rA, rA,ω) ⋅ �, (3)

where rA is the position of the emitter. The expression inside the
square root in Eq. (3) is the spectral density J(r,ω). For the numerical
implementation, we discretize the frequency integrals on a grid with
regular spacing �ω. Formally, we define the discrete orthonormal
modes,

an = 1√
�ω �

(n+1)�ω
n�ω

a(ω)dω, (4)

which obey [an, a†
m] = δnm since the original continuummodes obey

[a(ω), a†(ω′)] = δ(ω − ω′). This leads to the discrete Hamiltonian,

Hd =�
n
ωna†

nan +
Ω0

2
σz +�

n
gn�a†

n + an�σx, (5)

where ωn = (n + 1
2)�ω and gn = �J(rA,ωn)�ω. Here, we have dis-

carded the (infinite number of) superpositions of a(ω) orthogonal
to an in each interval that would make the transformation unitary.
Formally, this discretization can be understood as a chain trans-
formation50,60 of the continuum modes within each interval [n�ω,
(n + 1)�ω] under the approximation that g(ω) is constant within it,
discarding all but the first chain site.

In order to describe the action of an incoming classical elec-
tromagnetical field (e.g., a laser pulse), it would be possible to sim-
ply use a product of coherent states as the initial wave function,
�ψ(0)� = ∏n �αn(0)� = ∏n e

αn(0)a†n−αn(0)∗an �0�, where αn(0) corre-
spond to the classical amplitudes of the modes when expressing the
laser pulse in the basis defined by these modes. In order to avoid
the necessity for explicitly propagating this classical field within the
quantum calculation, the classical and the quantum field can be split
in the Hamiltonian using a time-dependent displacement operator15

T(t) = e∑n α∗n (t)an−αn(t)a†n , where αn(t) = αn(0)e−iωnt . Applying this
transformation to the wavefunction, |ψ′� = T(t)|ψ�, corresponds to
transforming the Hamiltonian as

H′d = T(t)HdT
†(t) − iT(t)@tT†(t)

=�
n
ωna†

nan +
Ω0

2
σz +�

n
gn�a†

n + an�σx
−�

n
ωnαn(t)α∗n(t) +�

n
gn�αn(t) + α∗n(t)�σx, (6)

where∑n gn�αn(t) + α∗n(t)� can be replaced by the interaction of the
classical field at the emitter position with the emitter dipole, −�E(t),
while ∑n ωnαn(t)α∗n(t) = ∑n ωn�αn(0)�2 just corresponds to a con-
stant energy shift that can be neglected. In the following, we thus use
H = Hd − �E(t)σx, i.e.,

H =�
n
ωna†

nan +
Ω0

2
σz +�

n
gn�a†

n + an�σx − �E(t)σx, (7)

as the effective Hamiltonian and take the initial state as the vacuum
state with the emitter in its ground state.61 However, it is impor-
tant to remember that EM field observables are also transformed
according to

�ψ�O�ψ� = �ψ′�T(t)OT†(t)�ψ′�, (8)

such that, e.g., �ψ|an|ψ� = � ψ′|an + αn(t)|ψ′�. This takes into account
the “quantum” field generated by the laser–emitter interaction inter-
feres with the classical pulse propagating through the structure and
ensures a correct description of absorption of the pulse, coherent
scattering, and similar effects. We note that the above properties
imply that within this framework, the action of any incoming laser
pulse on the full emitter-cavity system can be described purely by
the action of the medium-enhanced classical electric field driving
the emitter, with no additional explicit driving of any EM modes.
This is in contrast to, e.g., input–output theory, where the EM field is
split into modes inside the cavity and free-space modes outside, and
external driving thus affects the cavity modes. It should be stressed
in this context that E(t) is the field obtained at the position of the
emitter after propagation of the external laser pulse through the
cavity structure, i.e., it contains any field enhancement and tem-
poral distortion induced by the cavity. In practice, it is thus most
straightforward to employ classical EM simulations to calculate the
electric field reaching the emitter for a given input pulse and cavity
structure.

A. Heisenberg equations of motion
The evolution of any expectation value �O� = � ψ′|O|ψ′� can be

described by the Heisenberg equation of motion,

@t�O� = i�[H,O]�. (9)

In general, the time derivative of products of N operators�A1A2. . .AN� includes the contribution of N + 1 operators�A1A2. . .ANAN+1� due to the bilinear matter–field coupling in
Eq. (7), so one obtains an infinite set of equations that describe
the system. Truncating these expansions and, thus, neglecting some
contributions leads to a closed set of equations. This can be done
in a systematic way using the cumulant expansion (also known
as cluster expansion54,55 or truncated BBGKY hierarchy58). The
cumulant expansion method expresses an expectation value as
sums and products of expectation values of a smaller number
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of operators and their correlations and itself does not imply any
approximation. However, it then allows us to systematically discard
only high-order correlations and not just high-order expectation
values.

As an aside, we note that the meaning of “order of the approx-
imation” depends on which set of operators is used to represent
the system. For example, we use σx, σy, and σz as the “fundamen-
tal” operators, but it would be equally possible to use only σx and
σy (or more conventionally σ± = 1

2σ
x ± i

2σ
y) as σz = σ+σ− − σ−σ+

= 2σ+σ− − 1. Similarly, we only use an and a†
n, but it would be

equally possible to add the number operator Nn and, thus, obtain
photonic populations at lower orders. The convention we use is cho-
sen because of the direct connection to Maxwell–Bloch and other
mean-field approximations, where the population of the two-level
system is considered explicitly within the set of equations, while only
the coherent part of the EM fields is treated.

In addition to the different levels of approximation for the
dynamics obtained by truncating the systems at various orders, it
should be noted that the order of the expansion needed to describe
the system also depends on the expectation values of interest.
For example, the second-order correlation function g(2)(0) contains
expectation values of products of four operators and is exactly equal
to unity within the mean-field approximation.

We next show the set of equations obtained in our sys-
tem at various orders and discuss possible strategies for trunca-
tion. Some of these equations have been obtained by using the
QuantumAlgebra.jl package62 for symbolic calculation of quantum
operator expressions.

The set of equations that arise from applying Eq. (9) to single
operators (i.e., at first order) are

@t�an� = −iωn�an� − ign�σx�, (10a)
@t�σx� = −iΩ0�σy�, (10b)

@t�σy� = Ω0�σx� − 2�
n
gn�a†

nσz� + 2�E(t)�σz�, (10c)

@t�σz� = 2�
n
gn�a†

nσy� − 2�E(t)�σy�. (10d)

Within the cumulant expansion, the expectation value of a
product of operators is expressed as �ab� = �a��b� + �ab�C, where�ab�C is the correlation between a and b. The mean-field approxi-
mation consists in already neglecting all two-operator correlations,
i.e., to assume �ab�C � 0. If this approximation is made, Eqs. (10)
form a closed set that can be propagated in time.

At the next order of approximation, correlations up to second
order are taken into account. Then, the Heisenberg equations of
motion that arise are

@t�a†
nσx� = iωn�a†

nσx� −Ω0�a†
nσy� + ign, (11a)

@t�a†
nσy� = iωn�a†

nσy� +Ω0�a†
nσx� − gn�σz� − 2�

m
gm

× ��a†
na

†
mσz� + �a†

namσz�� + 2�E(t)�a†
nσz�, (11b)

@t�a†
nσz� = iωn�a†

nσz� + gn�σy� + 2�
m
gm

× ��a†
na

†
mσy� + �a†

namσy�� − 2�E(t)�a†
nσy�, (11c)

@t�a†
nam� = i(ωn − ωm)�a†

nam� + ign�amσx� − igm�a†
nσx�, (11d)

@t�a†
na

†
m� = i(ωn + ωm)�a†

na
†
m� + ign�a†

mσx� + igm�a†
nσx�. (11e)

Since �anσi� = �a†
nσi�∗ and �a†

na†
m� = �aman�∗, Eqs. (11) enough

to describe all combinations of two operators. In the cumulant
expansion, we re-express �abc� = �a��b��c� + �a��bc�C + �b��ac�C
+ �c��ab�C + �abc�C. For completeness, we here give the equations
of motion of the correlations explicitly,

@t�a†
nσx�C = iωn�a†

nσx�C −Ω0�a†
nσy�C + ign�1 − �σx��σx��, (12a)

@t�a†
nσy�C = iωn�a†

nσy�C +Ω0�a†
nσx�C − gn��σz� − i�σx��σy��

+ 2�E(t)�a†
nσz�C − 2�

m
gm��a†

m��a†
nσz�C

+ �am��a†
nσz�C + �σz��a†

na
†
m�C + �σz��a†

nam�C
+ �a†

na
†
mσz�C + �a†

namσz�C�, (12b)

@t�a†
nσz�C = iωn�a†

nσz�C + gn��σy� − i�σx��σz��
− 2�E(t)�a†

nσy�C + 2�
m
gm��a†

m��a†
nσy�C

+ �am��a†
nσy�C + �σy��a†

na
†
m�C + �σy��a†

nam�C
+ �a†

na
†
mσy�C + �a†

namσy�C�, (12c)

@t�a†
nam�C = i(ωn − ωm)�a†

nam�C + ign�amσx�C − igm�a†
nσx�C,

(12d)

@t�a†
na

†
m�C = i(ωn + ωm)�a†

na
†
m�C + ign�a†

mσx�C + igm�a†
nσx�C.

(12e)

The cumulant expansion provides a systematic approach to
approximate the true solution by neglecting higher-order corre-
lations between operators. A priori, one could assume that it is
always a better approximation to neglect a correlation �A1 . . .An�C
than the corresponding expectation value �A1. . .An� directly. How-
ever, as we will see later, this assumption is not always correct
and whether to neglect correlations or expectation values is a bet-
ter approximation depends on the physical system and concrete
situation.

We also mention that while Eqs. (11) describing the expec-
tation values are linear, the corresponding correlation expansion,
Eqs. (12) correspond to a nonlinear system depending on products
of the state variables (expectation values and correlations). These
nonlinearities make the obtained set of equations numerically more
unstable.

In Eqs. (12), no approximations have been made as no correla-
tions have been neglected yet. To obtain a closed set of equations
that may allow the description of the time evolution of the sys-
tem, some correlations have to be neglected again. The second-order
cumulant expansion approximation means to neglect the correla-
tions of three of more operators (�abc�C � 0) so that the set of
Eqs. (10) and (12) are enough to find a solution. The same proce-
dure as above can be followed to obtain the equations up to third
order, i.e., neglecting correlations of four or more operators (for ref-
erence, the required cumulant expansion is given in Appendix A).
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The third-order expectation values needed to describe the third
order completely are �a†

namσx,y,z�, �a†
na†

mσx,y,z�, �a†
na†

mal�, and�a†
na†

ma†
l �, with their explicit equations of motion given in

Appendix B. The equations for the correlations are not written, but
it is straightforward to derive them from the equations of motion of
the expectation values.

The numerical implementation of the equations is performed
within the Julia programming language.63 The code runs on graph-
ical processing units (GPUs), which provides a significant speedup
(≈20 for our available setup) over the central processing unit (CPU)
variant of the same code. For the time propagation, we rely on the
DifferentialEquations.jl package.64

III. RESULTS

A. Free space dynamics
The spectral density of an emitter in free space is

J(ω) = �hω3 ���2
6πε0c3

. (13)

Discretizing this spectral density with frequency spacing �ω is
equivalent to describing an emitter in center of a spherical box of
radius R = πc/�ω,65 where c is the speed of light in vacuum. As a
first example, we will treat spontaneous emission from an initially
excited emitter, i.e., the classical Wigner–Weisskopf problem.66 If
time propagation is performed over too long times (≈2R/c = 2π/�ω,
the time that it takes the photon to propagate from the emitter to the
boundary of the sphere and back), artificial reflections of the emitted
photons from the boundaries of the sphere are obtained and inter-
act again with the emitter. As the lifetime of typical emitters (atoms,
molecules, quantum dots) is on the scale of nanoseconds, an accu-
rate description would require a very small frequency spacing and,
thus, a very large box, and additionally, propagation over very long
times. To avoid this, we instead set the emitter dipole moment to
the unrealistically large value of � = 2565 D, for which the sponta-
neous emission lifetime at the emitter frequency of Ω0 = 2.72 eV
is given by τ ≈ 46 fs. We choose N = 400 photonic modes on a
regular grid in frequency from 0 eV to 5.44 eV. For these param-
eters, spontaneous emission takes place within a time shorter than
2R/c.

The spontaneous emission dynamics of an initially excited sin-
gle emitter in free space is shown in Fig. 1, which shows the excited-
state population of the emitter as a function of time, calculated using
three different numerical methods: Perturbative Wigner–Weisskopf
(WW) theory, which simply predicts exponential decay with rate
γ = J(Ω0), mean-field (MF), and second-order cumulant expansion
(2). As is well-known, the mean-field approximation does not pre-
dict any spontaneous emission. This is because this phenomenon is
due to the interaction of the emitter with the vacuum fluctuations�a†

nam� and the mean-field approximation neglects all the expec-
tation values of two or more operators. Since �an� = �σx� = �σy�
= 0 at t = 0 and no external electric field affects the system, no
dynamics are predicted. Going beyondmean-field is thus essential to
describe spontaneous emission.27,67 On the other hand, the second-
order cumulant expansion (and all higher-order approaches, not
shown) already perfectly describes the free-space spontaneous decay
of �σ+σ−� due to the vacuum fluctuations.

FIG. 1. Excited-state population of the emitter in time in free space. Compari-
son between Wigner–Weisskopf approximation (silver line), mean-field (light green
line), and second-order approximation (medium green dashed–dotted line).

We next consider an emitter initially in its ground state,�σ+σ−�(t = 0) = 0 under pumping by a classical electric field E(t).
We use a short Gaussian pulse in resonance with the emitter transi-
tion frequency, E(t) = E0e−(t−t0)2�2T2

sin(Ω0t). In order to describe
a more realistic system, the dipole moment of the emitter is set to
� = 2.56 D, corresponding to a spontaneous emission lifetime in
free space of τ ≈ 46 ns. The pulse parameters are t0 = 77.76 fs and
T = 24.20 fs. We now compare the mean-field and second-order
approaches with a semi-classical approximation in which no quan-
tized light modes are present at all, and the two-level system interacts
with the EM field via the equations,

@

@t
�Cg
Ce
� = −i� 0 −� ⋅ E(t)−� ⋅ E(t) Ω0

� ⋅ �Cg
Ce
�, (14)

where Cg and Ce are the ground-state and excited-state amplitudes,
respectively. The peak amplitudes of the electric field we consider
are E0 = 0.051 V/Å [Fig. 2(a)], E0 = 0.257 V/Å [Fig. 2(b)], and
E0 = 0.514 V/Å [Fig. 2(c)]. For the weakest driving we consider
that the system is already in the nonlinear regime but the electric
field is weak enough so that no Rabi oscillations are seen in the
atom dynamics [subplot (a)], while the two stronger fields lead to a
strongly nonlinear response with driven Rabi oscillations [subplots
(b) and (c)]. In this case, the coupling to the free-space modes is so
weak that they are not expected to have any influence on the dynam-
ics, and this is, indeed, observed in Fig. 2. All three approaches
(semi-classical, mean-field, and second order) accurately describe
the emitter dynamics, and correlations between the photonic modes
and the emitter can be neglected. After the end of the pulse, the
spontaneous decay (with lifetime τ ≈ 46 ns) is so slow that it is not
noticeable over the time scales we investigate although it would show
up eventually for longer propagation times for the second-order
approach.

B. Cavity
We next consider a spectral density that represents a single

lossy cavity mode. This is achieved using a Lorentzian frequency
dependence,
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J(ω) = g2

π
γ�2

(ω − ωc)2 + (γ�2)2 . (15)

The dynamics predicted using this spectral density is mathematically
equivalent to those of the Lindblad master equation

@tρ = −i[HR, ρ] + γLa[ρ], (16)

where HR is the Rabi Hamiltonian,

HR = Ω0

2
σz + ωca†a + g(a + a†)σx, (17)

for interaction of a single emitter with a single quantized mode,
while La[ρ] = aρa† − 1

2{a†a, ρ} is the Lindblad operator that
describes the cavity losses. The effective coupling g = �E1ph is deter-
mined by the amplitude of the Lorentzian spectral density, the effec-
tive losses are given by its width γ, and the frequency of the photonic
mode is the resonance frequency ωc of the Lorentzian.22,44

The emitter and cavity frequencies are both set to Ω0 = ωc
= 2.72 eV. We choose a bandwidth of γ = 0.027 eV (Q-factor
Q = ωc/γ = 100) and will consider various coupling amplitudes g.
The number of modes considered is N = 400, and the frequencies

FIG. 2. Excited-state population of a single emitter in free space under driving
by a short Gaussian pulse. The peak electric field amplitude increases from (a)
to (c) and is shown in each subplot. Comparison between semi-classical approx-
imation (yellow line), mean-field (light green line), and second-order approxima-
tion (dotted–dashed medium green line). All lines are indistinguishable for this
case.

are taken from ωmin = 2.04 eV to ωmax = 3.40 eV (grid spacing
�ω = 3.4 meV), so the range is wide enough and the number of
modes is big enough to represent the Lorentzian spectral density.

The emitter is initially in its excited state �σ+σ−�(t = 0) = 1 and
evolves freely in the cavity, without any external electric field. While
we do not employ the rotating wave approximation (RWA), which
consists in neglecting the counter-rotating terms a†

nσ+ and anσ− in
the Hamiltonian, it is approximately fulfilled for the coupling val-
ues we choose here. Within the RWA, the number of excitations
σ+σ− + ∑n a

†
nan is conserved. In Fig. 3, the evolution of the emit-

ter population is shown for a coupling strength of g = 0.008 eV, for
which the system is already close to the strong-coupling regime (4g> γ).68 In contrast to the free-space case, the second-order approx-
imation [shown in Fig. 3(a)] now starts to show some differences
with respect to exact solution obtained with the Rabi model, with
the population even reaching nonphysical values, �σ+σ−� < 0. This
implies that some third-order terms are required to obtain the cor-
rect dynamics, but it is not clear a priori which additional terms
have to be included. We thus compare different extensions of the
second-order expansion by successively adding higher-order terms.
In the first one, the second-order set of Eqs. (10) and (12) is used,
but in Eq. (12b), the term �a†

namσz�C and its dynamics are not
neglected. We denote this second-order approximation with a cor-
rection by “2+1a” in the following. The importance of including the
particular third-order term has been previously pointed out in the
literature56 and is due to it being the third-order correction with
the largest value. Taking into account that, to a good approxima-
tion, the state during the dynamics is described by a single excita-
tion, �ψ�≈ (ασ+ + ∑n βna†

n)�0�, we can easily see this by inspecting
the cumulant expansion of the third-order expectation values. For�a†

namσz�, this gives

FIG. 3. Excited-state population for an initially excited emitter in a cavity for cou-
pling g = 0.008 eV. (a) Comparison between the exact Rabi model solution (purple
line), 2nd order (medium green line) and 2+1a (dashed dark green line) approxima-
tion. (b) Comparison between the Rabi solution (purple line), 2+1a approximation
(dashed dark green line), 2+1b approximation (dashed dotted blue line), and 3rd
order (dotted red line).

J. Chem. Phys. 152, 034108 (2020); doi: 10.1063/1.5138937 152, 034108-6

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

�a†
namσz� = �a†

n��am��σz� + �a†
n��amσz�C + �am��a†

nσz�C
+ �σz��a†

nam�C + �a†
namσz�C. (18)

The first three terms are negligible since �an� ≈ 0, but the product�σz��a†
nam�C is non-negligible since both the emitter and photonic

mode populations are nonzero. At the same time, it does not approx-
imate the value of �a†

namσz� well so that the correlation �a†
namσz�C

is necessarily non-zero. In contrast, the expansion of �a†
namσy�

gives

�a†
namσy� = �a†

n��am��σy� + �a†
n��amσy�C + �am��a†

nσy�C
+ �σy��a†

nam�C + �a†
namσy�C. (19)

Here, all the product terms contain at least one negligible value as�σy� ≈ 0, while �a†
namσy� is also zero for the single-excitation state

given above. This implies that the correlation �a†
namσy�C is in turn

also negligible.
In the equation of motion of the new term �a†

namσz�, fourth-
order expectation values appear; see Eq. (B1c) in Appendix B. Per-
forming the cumulant expansion on these and neglecting the fourth-
order correlation, it is easy to see that only third-order correlations
that are neglected in the other equations appear, and by consistency,
these terms are approximated up to the second order as well, leading
to Eq. (B2).

As seen in Fig. 3(a), the dynamics of the emitter within the
2+1a approximation are changed, with the population never reach-
ing negative values. However, it still does not agree with the exact
solution provided by the Rabi model and is now overestimated.
Inspection of the equation of motion for �a†

namσz� [Eq. (B1c)] shows
that this contains fourth-order terms that involve two photonic cre-
ation or annihilation operators. For the current dynamics, where
to a good approximation only one excitation is present in the sys-
tem, these fourth-order expectation values are thus approximately
zero. Within the 2+1a approximation, they are, however, repre-
sented by products of non-negligible second-order correlations that
have non-zero values. It is then possible to improve the approx-
imation by not performing a cumulant expansion on the fourth-
order terms in Eq. (B1c), but by neglecting them directly. We
are going to refer to this approximation as “2+1b.” When using
it [shown in Fig. 3(b)], the emission dynamics are now correctly
obtained.

Finally, we also perform the full third-order expansion, with
the cumulant expansion performed on all expectation values and
fourth-order correlations being neglected. The third-order approx-
imation [also shown in Fig. 3(b)] provides identical results as
the 2+1a approach, proving that, indeed, all third-order correla-
tions apart from �a†

namσz�C can be neglected. However, for good
agreement with the exact results, the same correction as in the
2+1b approach would have to be performed or alternatively the
full expansion would have to be performed up to at least fourth
order.

We note here that numerically both approximations 2+1a and
2+1b are only slightly more costly than the second-order expan-
sion since the added term �a†

namσz�C only contains two continuum
indices n andm. In contrast, the full third-order expansion contains
terms of the form �anamao�C with three continuum mode indices

(represented by N × N × N arrays) and is thus significantly more
expensive to implement.

We now increase the coupling strength to g = 0.024 eV,
squarely in the strong-coupling regime where vacuum Rabi oscil-
lations are expected, and study the emitter dynamics as shown
in Fig. 4. All the previous approximations are compared again.
The nonphysical values that the population takes in the second-
order approximation are more evident when the coupling increases
although the Rabi oscillation frequency is reproduced well. For
the 2+1a approximation, which again gives identical results as the
full third-order expansion, this does not hold. This is because the
correlations that appear in the equation of motion of �a†

namσz�C
interact via the coupling, so if the coupling increases, the modi-
fications produced by the spurious correlations also increase. The
correction 2+1b, i.e., enforcing the fourth-order expectation value
in Eq. (B1c) to be zero, again predicts the exact dynamics accurately
since the system remains in the single-excitation subspace even
in strong coupling. These conclusions are essentially unchanged
even when increasing the coupling to g = 0.086 eV, shown in
Fig. 5.

We next compare the same physical system and the same
approximations, but now not for the case of spontaneous emis-
sion and vacuum Rabi oscillations, but for the emitter initially in
its ground state, �σ+σ−�(t = 0) = 0, and driven by an incoming
classical electric field. Two different pulses are considered. First,
we take the same short Gaussian pulse considered in free space
E(t) = E0e−(t−t0)2�2T2

sin(Ω0t) (assumed to be the pulse reaching the
emitter after enhancement and distortion by propagating through
the cavity structure). In the second case, we choose an electric field
that smoothly turns on and then remains at a stationary intensity
indefinitely, E(t) = E0 sin(Ω0t)(θ(t0 − t)e−(t−t0)2�2T2

+ θ(t − t0)),
where θ(t) is the Heaviside theta function, allowing to study if and
how a steady state is reached in the time propagation. In both cases,
the pump laser frequency is in resonance with the emitter and cavity
resonances.

FIG. 4. Excited-state population of an initially excited emitter in a cavity in the
strong-coupling regime, with g = 0.024 eV. Subplots and lines like in Fig. 3.
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FIG. 5. Excited-state population of an initially excited emitter in a cavity in the
strong-coupling regime, with g = 0.086 eV. Subplots and lines like in Figs. 3 and 4.

We first again use the cavity with the weakest light–matter
coupling (g = 0.008 eV). The emitter population dynamics when a
Gaussian pulse excites the system is shown in Fig. 6, while the steady-
state pulse is shown in Fig. 7. In both figures, we compare the same
approximations as above with the exact Rabi model solution. The
amplitudes of the electric field interacting with the emitter are the
same as in free space, given by �E0 = 0.026 eV [subplots (a) and (b)],
�E0 = 0.132 eV [subplots (c) and (d)], and �E0 = 0.263 eV [subplots
(e) and (f)].

In contrast to the free-space case, the quantum effects due
to fluctuations, such as spontaneous emission, are not negligible
here, and the mean-field approximation [shown in subplots (a),
(c), and (e)] fails to capture the dynamics as it can only repre-
sent the coherent contribution to the light–matter interaction.27 In
the short-pulse case [Fig. 6], this is mostly seen in the dynamics
after the pulse but is also reflected in Rabi oscillations during the
pulses with bigger amplitudes than the ones predicted by the exact
solution. Still, the mean-field approximation does give a qualita-
tively correct prediction of the behavior for the short-pulse case
(Fig. 6). In the case of a long pulse (Fig. 7), the initial driven oscil-
lations are well-described but, as there is no coupling between the
fluctuations and the emitter, no steady state is achieved and the
population keeps oscillating indefinitely. If the decay rate of the
emitter is known, incoherent contributions to the emitter dynam-
ics can be incorporated ad hoc using phenomenological decay con-
stants.69 However, obtaining these constants is not always easy and
is only straightforward in the weak-coupling regime where the light
and matter degrees of freedom are not mixed. In those case, the
validity and simplicity of the mean-field approximation makes it
a common tool in describing a wide range of systems pumped by
lasers.22,70

The second-order approximation [subplots (a), (c), and (e)] is
sufficient to describe the dynamics in this regime. When the ampli-
tude of the electric field is E0 = 0.051 V/Å and the pulse is short
[Fig. 6(a)], the dynamics predicted by this approximation are much
more similar to the Rabi solution as incoherent contributions are

FIG. 6. Excited-state population for an emitter initially in the ground state within a
cavity with g = 0.008 eV, driven by a short classical electric field pulse (see text for
details), for three different peak amplitudes as indicated in the subplots. (a), (c),
and (e) Comparison between the Rabi solution (purple line), mean-field (light green
line), 2nd order (medium green dashed–dotted line), and 2+1a approximation (dark
green dashed line). (b), (d), and (f) Comparison between Rabi solution (purple
line), 2+1a approach (dashed dark green line), 2+1b approach (dashed dotted
blue line), and 3rd order (dotted red line).

taken into account via the second-order terms. For a long pulse
[Fig. 7(a)], the oscillations are not accurately described, neither in
shape nor in amplitude, but it does give a qualitative prediction and
the steady state is predicted quantitatively. Making the correction
2+1a to the second order changes the dynamics only slightly. The
extra correlations included by this correction lead to a decrease in
the oscillation amplitude, but the qualitative description is main-
tained. Finally, enforcing the fourth order expectation values to be
zero via the correction 2+1b (subplot b), i.e., enforcing the system
to have only one excitation, hardly changes the prediction of the
emitter dynamics.

If the driving electric field is more intense [subplots (c), (d),
(e), and (f)], the second-order approximation [subplots (c) and (e)]
gives a correct description of the shape of the Rabi oscillations, but
their amplitude is underestimated. Approximations 2+1a and 2+1b
[subplots (d) and (f)] do not show any difference with respect to the
“bare” second order. Thus, correlations that change the description
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FIG. 7. Same as Fig. 6, but for a semi-infinite driving pulse with constant amplitude
after a smooth turn-on (see text for details).

of the dynamics completely in the case of spontaneous emission do
not matter much in the more classical case of driving by a strong
laser pulse. Finally, the third-order approximation is shown in sub-
plots (b), (d), and (f). Adding all the third-order correlations suffi-
ciently modifies the dynamics to achieve an accurate prediction in
good agreement with the Rabi model.

From the results in Figs. 6 and 7, we can conclude that when
the light–matter coupling is not too strong, the second-order corre-
lations are the most important and, in general, this order of approx-
imation is enough to describe the main characteristics of the solu-
tion. If a more quantitative description is required, the third-order
approximation achieves almost perfect agreement with the exact
dynamics.

The results obtained when again increasing the light–matter
coupling strength to g = 0.024 eV are shown in Fig. 8 for the
Gaussian pulse and in Fig. 9 for the semi-infinite pulse, with the
same driving pulses as in the previous case. When the amplitude
of the electric field is E0 = 0.051 V/Å [subplots (a) and (b)],
its magnitude is comparable to the coupling strength. The mean-
field approximation [subplot (a)] then overestimates the population
oscillations for both classical fields. This continues for more intense
driving fields [subplots (c) and (e)]. As mentioned above, while the

FIG. 8. Same as Fig. 6, but for emitter-cavity coupling of g = 0.024 eV.

mean-field approximation cannot reproduce spontaneous decay by
itself, adding phenomenological decay constants to the mean-field
equations can be used to achieve reasonable descriptions of the
strong-coupling regime for intense classical fields.71 However, doing
so means that the photons emitted due to field fluctuations are not
represented so that, e.g., the spontaneous emission from polaritonic
states72 could not be monitored in the emitted field.

Compared to the mean-field approach, the second-order
approximation better predicts both the short-time dynamics as well
as the steady-state limit for the semi-infinite pulse for the weak driv-
ing amplitude E0 = 0.051 V/Å, but slightly overestimates the popu-
lation at intermediate times. This overall picture also applies for the
stronger driving strengths [subplots (c)–(f)]. The corrections 2+1a
and 2+1b somewhat improve upon the bare second-order calcula-
tion, with 2+1a working slightly better for the semi-infinite pulses
(Fig. 9) and 2+1b working slightly better under short-pulse driving
(Fig. 8). Finally, as could be expected, the third-order approxima-
tion improves the results for both the short and semi-infinite pulses.
In particular, it perfectly reproduces the exact results during the
first few Rabi oscillations and converges to the correct steady-state
limit under long-pulse driving faster than the lower-order expan-
sions. However, even the third-order expansion does not fully repro-
duce the dynamics at intermediate times, where decoherence starts
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FIG. 9. Same as Fig. 8, but for a semi-infinite driving pulse with constant amplitude
after a smooth turn-on.

to set in and induces corrections to the coherent dynamics, which
are reflected in higher-order light-matter correlations at interme-
diate times. At longer times, where the system becomes mostly
incoherent, the light-matter correlations are again well-described by
lower-order expansions, and the steady state is thus well-represented
within the third-order and even second-order expansions.

To push the approximations more to their limit, we now
increase the emitter-cavity coupling to g = 0.086 eV and again
show the emitter population dynamics under short-pulse driving,
in Fig. 10, and for a semi-infinite pulse, in Fig. 11. The ampli-
tudes of the classical electric fields and their parameters are the
same as in the previous figures. For these parameters, we are
approaching the ultrastrong-coupling regime24 as the Rabi splitting
ΩR ≈ 2g = 0.172 eV becomes non-negligible compared to the emit-
ter frequency Ω0 = 2.72 eV. This implies that the counter-rotating
terms in the light–matter interaction become important and even
the ground state becomes dressed. Although we still choose the
uncoupled ground state of the system (EM vacuum and emitter in
the ground state) as the initial state, this state is not the ground
state of the coupled system, and starting the dynamics immedi-
ately leads to fast “quenching” or “ringdown” oscillations at short
times. These are seen for weak driving fields in subplots (a) and (b)

FIG. 10. Same as Fig. 6, but for emitter-cavity coupling of g = 0.086 eV.

of Figs. 10 and 11. Additionally, the very strong coupling implies
that the polaritonic states of the coupled cavity-emitter system at
ω± ≈ Ω0 ± g are now quite strongly detuned from the driving pulse
that is tuned to resonance with the bare-emitter (and cavity) reso-
nance frequency. The excitation amplitudes and driven Rabi oscilla-
tion frequencies in this case are therefore significantly smaller than
for the previously treated systemswith smaller light–matter coupling
strengths.

We now again investigate the validity of the various approx-
imations. The mean-field approximation cannot represent the
ultrastrong-coupling induced changes, which only show up in cor-
relations but do not lead to coherent fields. Therefore, neither the
ground state nor the steady state of the system can be described
correctly. This is especially noticeable under weak driving [subplots
(a) and (b)], where the shape of the driven oscillations is predicted
reasonably well, but the final populations are underestimated for
both types of driving. The higher-order expansions improve on
this result, but not even the third-order approximation manages to
fully reproduce the dynamics. This failure is most likely due to the
fact that the low-order correlation expansions now have to repro-
duce both the ultrastrong-coupling induced correlations as well as
the driving-pulse induced correlations so that overall, higher-order
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FIG. 11. Same as Fig. 10, but for a semi-infinite driving pulse with constant
amplitude after a smooth turn-on.

correlations become more important than in cases with weaker
emitter-cavity coupling. Still, under weak driving, all approxima-
tions manage to represent the overall dynamics reasonably well up
to a global shift. Interestingly, in this case, the 2+1a, 2+1b, and
third-order approximations all perform almost identically.

When the driving field amplitude is increased [subplots (c) and
(d) in Figs. 10 and 11], the correction to the population due to
the counter-rotating terms becomes less noticeable since the laser-
induced populations are larger. However, the predictions of the
cumulant expansion methods start to diverge more and more from
the exact results obtained within the dissipative Rabi model. Here,
the (ultra)strong light–matter coupling in combination with the
strong driving induces large correlations between light and matter
that fail to be described within low-order cumulant expansions. In
particular, in the case of the semi-infinite pulse, the results obtained
within the cumulant expansion fail to reproduce the steady-state
results even qualitatively and lead to significant shifts. It should be
noted that these effects are expected to be less relevant when many
emitters are included in the cavity.73

For the most intense driving field [subplots (e) and (f) in
Figs. 10 and 11], all considered approximations start to break down
for the strong emitter-cavity coupling considered here. For the

short-pulse case (Fig. 11), none of the approximations reproduces
the Rabi model even qualitatively, with the 2+1b and third-order
results again reaching unphysical values of the emitter population,�σ+σ−� < 0.

For the case of the semi-infinite pulse (Fig. 11), a similar pic-
ture presents itself. For these strong driving pulses, none of the
approximations captures the emitter dynamics well. In particu-
lar, the simulations using the 2+1a and third-order approxima-
tions break down even more dramatically shortly after the start of
the pulse, with the emitter population diverging toward infinity.
These results are therefore not shown here. We note that, as far
as we could determine, these divergences are not due to numerical
issues that could be solved by using better integration algorithms
but correspond to the actual behavior of the system description at
the chosen level and, thus, indicate a complete breakdown of the
approximations.

IV. SUMMARY AND OUTLOOK
To summarize, we have explored the cumulant expansion

method to calculate the Heisenberg equations of motion for one
emitter coupled to an arbitrary number of EM modes with an arbi-
trary spectral density as obtained through the formalism of macro-
scopic QED in nanophotonic and plasmonic systems. In order to
benchmark the method, we have compared its results to two well-
known cases where quasi-exact solutions are available: an emit-
ter in free-space, where perturbative approaches to light–matter
coupling are valid, and a Lorentzian spectral density that can be
mapped analytically to a Lindblad master equation describing the
dissipative Rabi model, i.e., coupling of the emitter to a single cav-
ity mode with losses. In the case of the cavity, we have explored
the change in behavior as the coupling strength is increased from
the weak up to the ultrastrong-coupling regime. We have investi-
gated both the spontaneous emission dynamics where the emitter
is initially excited and the behavior when a classical pulse pumps
the system and compared exact solutions with the predictions at
different orders of approximation. We have found that, in order
to describe spontaneous emission, going beyond the mean-field is
essential. While in free space, the second-order approximation is
enough to describe, in the cavity, the fact that the photon can be
reabsorbed after emission leads to corrections that are only well-
described at higher orders of approximation. Here, we have iden-
tified a single third-order term that describes the only important
contribution at that order, �a†

namσz�C. In order to describe sponta-
neous emission correctly (using the approximation we call 2+1b),
it is then necessary to explicitly disregard a fourth-order expecta-
tion value, instead of performing the cumulant expansion on it.
More systematic approximations, such as 2+1a, in which no spe-
cific assumptions are made for any the expectation values of the
system, cannot describe the spontaneous emission unless higher
orders are included in the expansion as some non-negligible cor-
relations arise in the set of equations. For this situation, the corre-
lation expansion does not actually provide a better approximation
than working directly with expectation values and discarding higher
orders.

As expected, the mean-field approximation is able to describe
the emitter dynamics when a classical field pumps the system if
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coherent interactions are predominant. In free space, the descrip-
tion is accurate although the slow (nanosecond-scale) spontaneous
emission and associated decay after the pulse again cannot be rep-
resented. The second-order approximation again can reproduce this
decay.

In the strong-coupling regime, i.e., when the emitter is coupled
to a cavity mode with coupling strengths similar to or larger than the
cavity losses, the second-order approximation fails to describe the
dynamics in several cases. The combined action of the coherent driv-
ing laser pulse and the strong light–matter coupling with the cavity
mode lead to an increase in light–matter correlations at intermedi-
ate times which is proportional to both the driving field strength and
the light–matter coupling strength. In order to describe these corre-
lations well, the order of the expansion has to be increased, with the
third-order expansion being sufficient to describe most investigated
cases. At later times, either after the pulse in short-pulse driving or
when a steady state is approached under continuous driving, the
required order of the approximation needed to describe the system
well again decreases. However, for large enough emitter-cavity cou-
pling strengths and driving intensities, the cumulant expansions at
the orders used here fail to describe the dynamics and become unsta-
ble. In general, the order of approximation or even the validity of
the cumulant expansion method to describe the emitter dynamics
depends strongly on the physical system and the initial conditions
and driving.

Going forward, it would be interesting to study the conver-
gence properties of the cumulant expansion when the number of
emitters is increased. In that case, the system is expected to behave
more “classically” so that low-order cumulant expansions could pro-
vide a better approximation than in the cases studied here, in par-
ticular, under driving by external coherent laser pulses. Further-
more, the capability of the method to treat an arbitrary spectral
density could be exploited to study emitter dynamics in systems
that are not well-described by a single or few cavity modes, such
as found in complex nanoplasmonic or hybrid plasmonic-dielectric
structures.10–13,42
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APPENDIX A: CUMULANT EXPANSIONS
UP TO FOURTH ORDER

For reference, we here give the cumulant expansion for expec-
tation values of products of up to four operators expressed in terms
of single-operator expectation values and cumulants,53

�ab� = �ab�C + �a��b�, (A1a)
�abc� = �abc�C + �a��b��c� + �a��bc�C + �b��ac�C + �c��ab�C,

(A1b)

�abcd� = �abcd�C + �a��b��c��d� + �a��b��cd�C + �ab�C�c��d�
+ �ab�C�cd�C + �a��c��bd�C + �ac�C�b��d� + �ac�C�bd�C
+ �a��d��bc�C + �ad�C�b��c� + �ad�C�bc�C + �a��bcd�C
+ �b��acd�C + �c��abd�C + �d��abc�C. (A1c)

APPENDIX B: THIRD-ORDER EQUATIONS
For reference, we here reproduce the equations needed to

describe the third-order expectation values,

@t�a†
namσx� = i(ωn − ωm)�a†

namσx� −Ω0�a†
namσy�

+ ign�am� − igm�a†
n�, (B1a)

@t�a†
namσy� = i(ωn − ωm)�a†

namσy� +Ω0�a†
namσx�

− gn�amσz� − gm�a†
nσz�

− 2�
l
gl��a†

na
†
l amσ

z� + �a†
nalamσz��

+ 2 �E(t)�a†
namσz�, (B1b)

@t�a†
namσz� = i(ωn − ωm)�a†

namσz� + gn�amσy� + gm�a†
nσy�

+ 2�
l
gl��a†

na
†
l amσ

y� + �a†
nalamσy��

− 2 �E(t)�a†
namσy�, (B1c)

@t�a†
na

†
mσx� = i(ωn + ωm)�a†

na
†
mσx� −Ω0�a†

na
†
mσy�

+ ign�a†
m� + igm�a†

n�, (B1d)

@t�a†
na

†
mσy� = i(ωn + ωm)�a†
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†
mσy� +Ω0�a†
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†
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− gn�a†
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− 2�

l
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†
l a

†
mσz� + �a†

na
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malσz��

+ 2 �E(t)�a†
na

†
mσz�, (B1e)

@t�a†
na

†
mσz� = i(ωn + ωm)�a†

na
†
mσz� + gn�a†

mσy� + gm�a†
nσy�

+ 2�
l
gl��a†

na
†
l a

†
mσy� + �a†

na
†
malσy��

− 2 �E(t)�a†
na

†
mσy�, (B1f)

@t�a†
na

†
mal� = i(ωn + ωm − ωl)�a†

na
†
mal� + ign�a†

malσx�
+ igm�a†

nalσx� − igl�a†
na

†
mσx�, (B1g)

@t�a†
na

†
ma

†
l � = i(ωn + ωm + ωl)�a†

na
†
mal� + ign�a†

ma
†
l σ

x�
+ igm�a†

na
†
l σ

x� + igl�a†
na

†
mσx�. (B1h)

In the approximation 2+1a, just Eq. (B1c) is added to the sets of
Eqs. (10) and (11). Moreover, the fourth-order terms are expanded
up to second order, so both the fourth and the third order cor-
relations are neglected. The equation of motion of the third-order
correlation is
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@t�a†
namσz�C = gn��amσy�C − i�σx��amσz�C − i�σz��amσx�C�

+ gm��a†
nσy�C + i�σx��a†

nσz�C + i�σz��a†
nσx�C�

+ i(ωn − ωm)�a†
namσz�C + 2�

l
gl

×��a†
l a

†
n�C�amσy�C + �a†

l am�C�a†
nσy�C

+ �a†
nal�C�amσy�C + �alam�C�a†

nσy�C�. (B2)

In Eq. (B2), the terms �a†
namalσy�C, �amalσy�C, �a†

nalσy�C, and�a†
namσy�C are neglected. The correlations inside the last bracket in

(B2) make this term non-negligible although the expectation values
in (B1c) are analytically zero.

In the approximation 2+1b, Eq. (B1c) is again the only one
added, but instead of doing the cumulant expansion of the higher-
order terms that appear in this equation, the condition �a†

na†
l amσ

y�
= �a†

nalamσy� = 0 is imposed directly.
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