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Abstract: The control of the interaction between quan-
tum emitters using nanophotonic structures holds great
promise for quantum technology applications, while its
theoretical description for complex nanostructures is a
highly demanding task as the electromagnetic (EM)modes
form a high-dimensional continuum. We here introduce
an approach that permits a quantized description of the
full EM field through a small number of discrete modes.
This extends the previous work in ref. (I. Medina, F. J.
García-Vidal, A. I. Fernández-Domínguez, and J. Feist,
“Few-mode field quantization of arbitrary electromagnetic
spectral densities,” Phys. Rev. Lett., vol. 126, p. 093601,
2021) to the case of an arbitrary number of emitters,
without any restrictions on the emitter level structure or
dipole operators. The low computational demand of this
method makes it suitable for studying dynamics for a
wide range of parameters. We illustrate the power of our
approach for a system of three emitters placed within a
hybrid metallodielectric photonic structure and show that
excitation transfer is highly sensitive to the properties of
the hybrid photonic–plasmonic modes.

Keywords: few-mode quantization; hybrid cavities; mul-
tiple emitters; quantum nanophotonics; subwavelength
cavity QED.
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1 Introduction
The control of photon-mediated interactions between
quantum emitters has generated great interest over the
last years, since it is essential for quantum technol-
ogy applications such as quantum networking, quantum
information, and quantum computation [1–5]. Nanopho-
tonic devices with subwavelength light confinement are
promising platforms to engineer such interactions, as the
large confinement enables large emitter-photon coupling
strengths and thus fast dynamics. At the same time,
achieving strongly subwavelength confinement typically
relies on the use of highly lossy constituents such as
metallic nanoparticles with plasmonic resonances [6]
and furthermore requires that the quantum emitters are
brought close to thematerial surfaces. In these conditions,
the EMmode spectrum typically contains a series of broad
and overlapping resonances [7].

Quantizing the electromagnetic (EM) field in such
systems is highly nontrivial, as losses cannot be neglected
nor treated perturbatively, such that standard approaches
of quantization fail [8, 9]. One powerful framework that
overcomes these limitations is given bymacroscopic quan-
tum electrodynamics (QED) [10–18]. It provides a recipe
for quantizing the medium-assisted EM field in material
structures whose response is approximated through the
macroscopic Maxwell’s equations, including dispersive
and lossy materials. However, within this quantization
scheme, the quantized EM field is described by an
extremely large continuum of bosonic modes [18]. While
this approach has proven hugely successful for treating
problemswhere theEMmodes are treatedperturbatively or
integratedout in someotherway, it is not directly useful for
applying cavity QED-like approaches in which the modes
are treated as explicit degrees of freedom of the system.

In parallel to the work on macroscopic QED, there is a
long history of approaches aiming to construct models for
the EM or other environments based on a few lossy modes
[19–25]. However, most of them cannot deal explicitly
with material losses. The increasing interest in metallic
and metallodielectric subwavelength cavity QED systems,
in which highly lossy resonances act as effective cavity
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modes, has led to the development of several approaches
that build onmacroscopic QED and allow the construction
of few-mode quantizedmodels in which the full quantized
EM field is approximately described through a (small)
collection of discrete quantized modes. One approach
reliesonquasinormalmode theory forMaxwell’s equations
[26–28]. It is basedon forming superpositions of themodes
of macroscopic QED that correspond to the quasinormal
modes (resonances) of the material structure and then
performingappropriate approximations to obtain the ener-
gies,decay rates, andcoherentand incoherent interactions
of these modes [29–31]. This approach is powerful but
relies on being able to select just a few quasinormal
modes of the system. In the case of nanometric-sized
metallic structures, a similar quantization strategy has
been used, but greatly simplified through the quasi-static
description of sub-wavelength-confined plasmonic fields,
which allows the spectral density to be written in terms of
independent Lorentzians, thus allowing its quantization
in terms of noninteracting lossy modes [7, 32–34]. An
alternativeapproach isobtainedbyexploiting the fact that,
due to its linearity, a system of harmonic oscillators (such
as EM modes) is fully determined by its linear response
to the quantum emitter, encoded in the so-called spectral
density. This viewpoint is inspired by the field of open
quantum systems and unlocks the possibility to use the
many tools of that field [35–40]. In particular, this includes
the idea to construct a model environment that shows
the same response as the real one but is (significantly)
easier to solve than the original problem. It has recently
been shown that a discrete collection of interactingmodes
coupled to fully Markovian background baths provides
exactly suchamodelwith sufficient flexibility to reproduce
the complex response of typical nanophotonic systems
[1], while leading to a relatively easily solvable cavity
QED-like few-mode model. This is achieved by explicitly
enforcing Markovianity of the background baths in the
model construction, which is not easily obtained without
approximations when the modes are constructed from a
partitioning of the underlying EM problem [22, 25]. The
model thus circumvents the problem of finding a direct
simplification of macroscopic QED to a few-mode model
and replaces it by a fitting procedure for which the degree
of convergence can be checked by comparing the EM and
model spectral densities. Another important advantage of
this model lies in the fact that often just one or a few
model modes are enough to accurately represent peaks
in the spectral density that arise due to the collective

action of many overlapping quasi-degenerate physical
resonances of the system. In contrast, in approaches based
on quasinormal modes, all physical resonances must be
included in the description, and achieving convergence of
the spectral density is challenging. Sucha situation is often
encountered in the so-called pseudomodes (unrelated to
the concept of pseudomodes used in the literature on
quantization of lossy modes [21]) in plasmonic systems,
which arise due to the collective response of high-k modes
inplanar systems [41] or high-ordermultipoles in spherical
ones [32].

While the model developed in ref. [1] can treat a
wide range of nanophotonic structures, in the formulation
presented therein, it is only suitable for situations where
only a single emitter is present in the system and all
considered emitter dipole transitions are co-aligned. In
the present article, we lift these restrictions and extend the
approach to a collection of emitters with arbitrary orien-
tations of the transition dipole moments. We achieve this
by first generalizing the definition of the spectral density
to the case of several light–matter interaction operators
[42–44]. The spectral density J(𝜔), which is normally a
scalar function that fully characterizes the interaction
betweenaquantumsystemandabathmediatedbya single
interaction operator [39, 45], then becomes an M ×M
matrix-valued function. Here, M is the number of distinct
interaction operators that are treated (M = 3Me for Me
dipolar emitters with all three possible dipole orientations
taken into account for each emitter). We then extend the
few-mode quantization approach presented in ref. [1] to
this case. We show that also in this case, a simple fitting
procedure leads to a few-mode quantization of generalized
spectral densities for several emitters placed at different
positions.

We then apply the approach to study energy transfer
between emitters for three different situations: (i) transfer
of a single excitation from a coherent superposition of
two emitters to a third one; (ii) transfer of a single
excitation from one emitter to another, mediated by the
third one; and (iii) excitation transfer to a third emitter
when the other two emitters are initially excited. Our
method is able to calculate the dynamics for these dif-
ferent examples at low computational cost. They show
that the use of metallodielectric structures allows great
control in the population transfer between emitters close
to resonance to a hybrid mode, with slight changes in
the emitter parameters inducing qualitatively different
dynamics.
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2 Theory
We start by discussing a general model consisting of
a matter part (which can represent multiple emitters)
linearly coupled to a collection of bosonic modes (which
will later represent the medium-assisted EM field). We set
ℏ = 1 here and in the following, andwrite the Hamiltonian
as

H = Hmat + A⃗†THA⃗+
(
V⃗T ⋅M ⋅ A⃗+ H.c.

)
, (1)

where Hmat describes the matter (the emitters), A⃗ =
(a1, a2,… , a𝛼,…)T collects all EM modes, and V⃗ =
(V1,V2,… ,Vn,…)T collects the emitter operators describ-
ing the interaction with the bosonic modes. In the case
considered below, V⃗ will contain the dipole operators (up
to three per emitter if all polarizations have to be taken
into account). The properties of the bosonic environment
are thus fully encoded in thematricesH (sizeNa × Na) and
M (sizeM × Na), whereNa is the number of bosonicmodes
and M is the number of matter interaction operators. We
note that for simplicity of notation, we discuss a formally
discretized bosonic bath and will perform the continuum
limit Na →∞ when required.

We now define the generalized spectral density asso-
ciated to the bosonic environment in Eq. (1) as

 (𝜔) = lim
𝜖→0

1
𝜋
M Im

[ 1
H−𝜔− i𝜖

]
M†. (2)

This definition is a straightforward extension of the
single-emitter spectral density to the case of multiple
light–matter interaction operators, obtained by replacing
a 1 × Na vector of light–matter coupling elements by the
M × Na matrix M, and has been previously obtained in
the context of the Wigner–Weisskopf problem (i.e., within
the single-excitation subspace) [42–44]. We note that it is
not a priori clear whether  (𝜔) encodes the full informa-
tion about the environment that the emitters interact with
(as is well known for the case of 1D-spectral densities).
Below, we show that this is indeed the case. The general-
ized spectral density is anM ×Mmatrix-valued functionof
frequency and fulfills  (𝜔)† =  (𝜔). We note that when
the emitters are approximated as two-level systems, the
transition dipolemoments are usually included inM, such
that the interactionoperatorsVn becomeunitlessand (𝜔)
has units of frequency [42].

IfH is diagonal,H𝛼𝛽 = 𝜔𝛼𝛿𝛼𝛽 , we can use the Sokhot-
ski–Plemelj formula lim𝜖→0

1
𝜔′−𝜔−i𝜖 = 

1
𝜔′−𝜔 + i𝜋𝛿(𝜔′ −

𝜔) to get

nm(𝜔) =
∑
𝛼

Mn𝛼M∗
m𝛼𝛿(𝜔−𝜔𝛼), (3)

which is a form where the relation to conventional
single-emitter spectral densities J(𝜔) = ∑

𝛼|M𝛼|2𝛿(𝜔−
𝜔𝛼) appears even more clearly.

To connect the general Hamiltonian Eq. (1) to the
physical system we are interested in (a collection of
emitters interacting with the EM field supported by a
material structure), we use the framework of macroscopic
QED. The Hamiltonian in the multipolar coupling scheme
(Power–Zienau–Woolley picture) and within the dipole
approximation can then be written as

H =
∑
𝜆

∫
d3r

∞

∫
0

d𝜔𝜔f̂†
𝜆
(r, 𝜔)f̂𝜆(r, 𝜔)

+
∑
k
Hk −

∑
k
μk ⋅ Ê(rk), (4)

where 𝜆 = {e,m} labels the electric and magnetic contri-
butions, M is the number of emitters, f̂𝜆(r, 𝜔) and f̂†

𝜆
(r, 𝜔)

are the bosonic annihilation and creation operators of
the medium-assisted field, and Hk and 𝜇k are the bare
Hamiltonian and dipole operator of emitter k. The electric
field operator is given by

Ê(r) =
∑
𝜆

∫
d3r′

∞

∫
0

d𝜔G𝜆(r, r′, 𝜔) ⋅ f̂𝜆(r′, 𝜔)+ H.c., (5)

where G𝜆(r, r′, 𝜔) are the electric and magnetic Green’s
functions, given by [15]

Ge(r, r′, 𝜔) = i𝜔
2

c2

√
ℏ

𝜋𝜖0
Im 𝜖(r, 𝜔)G(r, r′, 𝜔), (6)

Gm(r, r′, 𝜔) = −i𝜔c

√
ℏ

𝜋𝜖0

Im𝜇(r, 𝜔)
|𝜇(r, 𝜔)|2 G(r, r

′, 𝜔) ×
←

∇′. (7)

In this approach, retardation effects are fully included and
encoded in the EMGreen’s function. This Hamiltonian can
be rewritten in the form of Eq. (1) by formally discretizing
space and frequency and defining a𝛼 = n𝛼 ⋅ f̂𝜆𝛼 (r𝛼, 𝜔𝛼),
with a combined mode index 𝛼 ≡ (𝜆𝛼, r𝛼, 𝜔𝛼,n𝛼), where
n𝛼 ∈ {x̂, ŷ, ẑ}. Furthermore, the interaction operators
Vn = nn ⋅ μkn are determined by a combined index n ≡

(kn,nn), where the unit vectors nn give the (up to three)
dipole directions taken into account for each emitter.
This way, we can identify H𝛼𝛽 = 𝛿𝛼𝛽𝜔𝛼 and Mn𝛼 = −nn ⋅
G𝜆𝛼 (rn, r𝛼, 𝜔𝛼) ⋅ n𝛼 .

Inserting the expression forMn𝛼 in Eq. (3), taking the
continuum limit (i.e., replacing the sum over 𝛼 with the
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corresponding sums and integrals), and using the Green’s
function integral identity [15]

∑
𝜆
∫

d3sG𝜆(r, s, 𝜔) ⋅ G∗T
𝜆
(r′, s, 𝜔)

= 𝜔2

𝜋𝜖0c2
ImG(r, r′, 𝜔) (8)

leads to

nm(𝜔) =
𝜔2

𝜋𝜖0c2
nn ⋅ ImG(rn, rm, 𝜔) ⋅ nm, (9)

where G is the conventional dyadic Green’s function. The
generalized spectral density of an EM environment is thus
seen to be directly related to the so-called cross density
of states used to characterize the spatial coherence of
photonic systems [46, 47]. The diagonal elements of  (𝜔)
are equal to the “conventional” spectral density for a single
transition up to the square of the dipole transition matrix
element, 𝜇2

nnn(𝜔) = Jn(𝜔). From Eq. (9), it can be seen
that (𝜔) is a real and symmetric matrix for any frequency
𝜔, and due to the properties of the EM dyadic Green’s
function, it is also positive definite. This means that it
can be decomposed in the form  (𝜔) = g(𝜔)g(𝜔)†, where
g(𝜔) can be chosen real and is unique up to unitary trans-
formations g′(𝜔) = g(𝜔)U(𝜔). We now note that g(𝜔) is
exactly the coupling matrix that appears in the expansion
of themulti-emitter problemusing emitter-centeredmodes
in macroscopic QED [18]. As discussed and demonstrated
in that reference, this quantity indeed encodes the full
information about the EMenvironment, and consequently,
so does  (𝜔). This means that two different systems with
the same (𝜔) are indistinguishable from thepoint of view
of the emitters. We note in passing that  (𝜔) is in fact
a more fundamental quantity than g(𝜔), as it does not
depend on an arbitrary choice of basis.

We now extend the model presented in ref. [1] in
order to obtain an effective few-mode description of the
multi-emitter problem. As discussed there, the idea is
to find a model system that is equivalent to the actual
EM environment but has a structure that facilitates its
numerical solution and the interpretation of the result-
ing dynamics. We again introduce a discrete set of N
mutually coupled discrete EM modes ai, each of which
is coupled to an independent bath of “background”modes
bi,Ω with frequency-independent coupling determined by
𝜈i =

√
𝜅i∕(2𝜋) and also to the emitter interaction operator

Vn with coupling strength gni. The background bath
modes are not directly coupled to the emitters. The model

Hamiltonian is then given by = S +B, where

S =
∑
n
Hn +

∑
i, j
𝜔i ja

†
i a j +

∑
n,i
Vngni

(
ai + a†i

)
, (10a)

B =
∑
i

∞

∫
−∞

[
Ωb†i,Ωbi,Ω + 𝜈i

(
b†i,Ωai + bi,Ωa

†
i

)]
dΩ. (10b)

Since the coupling of the discrete modes to the
background baths is spectrally flat and extends over the
full real axis, it is perfectly Markovian and furthermore
does not induce energy shifts on the discrete modes. The
dynamics of the system are then equivalently described
[39, 48] by the Lindblad master equation

𝜌̇ = −i[S, 𝜌]+
∑
i
𝜅iLai [𝜌], (11)

where 𝜌 is the system density matrix and LO[𝜌] = O𝜌O† −
1
2{O

†O, 𝜌} is a Lindblad dissipator. We note here that since
the frequency integrals in Eq. (10b) extend over the full
real axis, the model spectral density is not necessarily
zero at negative frequencies. In contrast, the EM spectral
density at zero temperature is only nonzero for positive
frequencies. Depending on the physical processes under
study, some care has to be taken to ensure that nonzero
negative frequency components do not induce artificial
effects in the dynamics (which tends to happen when
counterrotating terms are important in the light–matter
coupling, such as in the limit of ultrastrong coupling [49]).

The model Hamiltonian  can also be rewritten in
the form of Eq. (1). To do so, we formally discretize the
bath continua, with Nb modes for each continuum, such
that there are Na = N(Nb + 1) bosonic modes, given by

A⃗ =
(
a1,… , aN , b1,Ω1

,… , b1,ΩNb
, b2,Ω1

,… , bN,ΩNb

)T
. In this

form, H is not diagonal but consists of the block matrix
𝜔ij in the top left, a series of diagonal blocks for each
continuum, and constant off-diagonal coupling elements
between all modes of a block and the discrete mode
associated to it. Finally, M is an M × N(Nb + 1) matrix in
block form,M =

(
g 0

)
, where g is the realM × N matrix

containing the coupling elements gni.
A compact form of the generalized spectral density

of the model system can be obtained from Eq. (2),
either by explicit diagonalization of H using the Lipp-
mann–Schwinger formalism as in the supplemental mate-
rial of ref. [1] (see [25] for an overview of the method)
or by following the approach of ref. [50]. The resulting
expression is

 mod(𝜔) =
1
𝜋
g Im

[ 1
H̃−𝜔

]
gT , (12)
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where H̃ is a complex symmetric N × N matrix with
elementsgivenby H̃i j = 𝜔i j − i

2𝜅i𝛿i j.When H̃ isdiagonaliz-
able, H̃ = V𝛀̃VT , where 𝛀̃ is a diagonal matrix containing
the (complex) eigenvalues and V is a complex orthogonal
(not unitary) matrix, VTV = 1, this expression can be
rewritten as a sum over resonances,

 mod(𝜔) =
1
𝜋
Im

[
g̃ 1
𝛀̃−𝜔

g̃T
]
, (13)

where g̃ = gV. This diagonal form facilitates the classifi-
cation of multi-mode effects [51]. Furthermore, this form
makes clear that the complex eigenvalues of H̃ are poles
of the model spectral density,  mod(𝜔). This implies that
when the physical spectral density (determined by the EM
Green’s function) is dominatedbyaclear set of resonances,
the number of discrete modes needed to approximate it
closely can be quite small, with about one mode per peak.
In this limit and for a sufficiently converged fit, the poles of
the model spectral density will thus coincide closely with
thedominantpolesof the classicalGreen’s function,which
correspond to the quasinormal modes that contribute
most strongly to the Green’s function. We also note here
that although we have assumed that the EM modes are
initially in the vacuum state, nonzero temperature could
be implemented by replacing the spectral density by the
(temperature-dependent) bath noise-power spectrum [52],
while again using the vacuum state as the initial state
of the “temperature-adjusted” bath. Furthermore, (classi-
cal) external driving fields can also be straightforwardly
included [18, 53]. Finally, it has recently been shown that
quasinormal mode quantization can also be performed in
gain media [30], and a similar extension of the current
approach (which is restricted to absorbing materials) is
probably possible.

As in the single-emitter case, theparameters in Eq. (12)
can be adjusted to best reproduce the generalized spectral
density Eq. (9) calculated from the dyadic EMGreen’s func-
tion and thus parametrize the model Hamiltonian . We
note that a recent article provided convergence guarantees
for such a fit (for spectral densities fulfilling some specific
assumptions) even for the case of noninteracting modes
(i.e., where 𝜔ij = 𝜔ii𝛿ij) [54]. However, the proof given in
ref. [54] relies on the limit of vanishing mode decay rates,
which essentially amounts to a direct discretization of the
continuum. While this limit can be represented within our
approach, the resulting model is not useful in practice if
thenumber ofmodes becomes toohigh. For the systemand
parameter regime we study here, excellent convergence is
reached with relatively small numbers of modes (around
one per peak, which is much smaller than the number of

quasinormal modes required to reproduce the full spectral
density). However, it is well known that, e.g., in the
ultrastrong-coupling limit, a single mode with a Lindblad
decay term leads to unphysical effects [23, 55–57], such
that themapping of physical resonances to discretemodes
in our model can be expected to break down. The practical
utility of the approach will thus depend on the specifics of
the spectral density, the range of relevant frequencies, and
the physical processes of interest.

In the current work, the fit procedure used the
optimization routines included in SciPy [58]. The overall
fit was done in steps, i.e., “emitter by emitter,” where
first the (diagonal) spectral density of one emitter was
fitted and then used as the initial guess for the fit of
two emitters and their interactions. This two-emitter fit
was then in turn used as part of the initial guess for all
three emitters and their interactions. We emphasize here
that, in order to give a correct description of the whole
system, the full matrix-valued  (𝜔) including the off-
diagonal components must be reproduced. The symmetry
of  (𝜔) means that this corresponds to a simultaneous
fit of M(M + 1)∕2 real-valued functions. The off-diagonal
elements of the generalized spectral density,which encode
the interaction between the emitters mediated by the
EM fields, can have negative values, while the diagonal
elements,which correspond to the “conventional” spectral
densities, are non-negative, i.e., Jnn(𝜔) ≥ 0 for all 𝜔. We
note that the spectral density is fully determined by the
position of the emitters, with no restriction on the emitter
properties. In particular, this approach is not restricted
to two-level systems. However, if only one or two dipole
orientations are relevant for the transitions of any emitter,
the number of necessary interaction operators and thus
the dimensionality of  (𝜔) can be reduced.

For completeness, we note that the number of free
parameters in thediagonal formgiven inEq. (13) is typically
significantly smaller than in the nondiagonal form given
in Eq. (12). In the nondiagonal form, the number of real
parametersneeded is 1

2N(N + 1) for𝜔ij,N for𝜅 i, andNM for
gni, giving a total of

1
2N(N + 2M + 3) free real parameters.

In the diagonal form, there are N complex parameters Ω̃i,
while g̃ has NM complex parameters that are restricted by
up to 1

2M(M + 1) relations since g̃g̃T = ggT must be purely
real, giving 1

2 (4N −M)(M + 1) real parameters (when N >
M). Itwould thus seemthat this form ismore convenient for
fitting than the nondiagonal form. However, this turns out
not to be the case [59]: first, in this form, it is not straight-
forward to enforce that the fit parameters correspond to a
physical systemwhere mod(𝜔) is realpositivesemidefinite
for all frequencies. Second, even when that constraint
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is achieved, implementation of the dynamics through a
Lindblad master equation (which as discussed above is
the final goal of this approach) requires a form in which
the imaginary part of the complex symmetric matrix H̃ is
negative semidefinite,whileg is real. Thiswould require an
algorithm that finds a complex orthogonalmatrixV, which
“undiagonalizes” the system and can be used to obtain
physical H̃ = V𝛀̃VT and g = g̃VT for any given 𝛀̃ and g̃.
To the best of our knowledge, no algorithm that achieves
this has been found [59, 60]. It is thusmore straightforward
to directly use the nondiagonal form Eq. (12) when fitting.

3 Results
To illustrate thegeneralization to themultiple emitter case,
we consider the same physical setup as in ref. [1], see the
inset in Figure 1. It consists of two silver nanoparticles
(ellipsoids with long axis of 120 nm and short axis of
40 nm), separated by a 3 nm gap, and embedded in a
dielectricGalliumphosphide (GaP, 𝜖sph = 9) nanosphere
of 600 nm radius, with the rods substantially displaced
from the center of the sphere. We consider three two-level
emitters placed in different positions, indicated by red
dots in the inset in Figure 1. We will refer to the emitter

positions as: (i) Gap (in the center between the rods), (ii)
Top (1.5 nm above the upper rod), and (iii) Bottom (1.5 nm
below the lower rod). The generalized spectral density
then is characterized by six independent functions (three
diagonal and three off-diagonal). Since we consider two-
level quantum emitters with a single dipole transition, we
include the transition dipole moments within the spectral
density for simplicity, Jnm(𝜔) = 𝜇n𝜇mnm(𝜔), with values
givenby𝜇Top = 𝜇Bottom = 0.55e nmand𝜇Gap = 0.257e nm.
The interaction operators are then just Vn = 𝜎+n + 𝜎−n . The
physical system, as well as the emitter dipole moments,
have been chosen so that the validity of the model and the
potential of these structures can be illustrated. Nonethe-
less, the used parameters are within a realistic range, as
similar dipolemoments have been shown in quantumdots
[61] and in (short) J-aggregates [62] that would fit within
the gap. Additionally, similar couplings, and therefore
similar effects as the ones studied in this article, could
be obtained by decreasing both the dipole moment and
the gap size. Figure 1 shows the generalized spectral
density (black lines) obtained from classical simulations
performedwith theMaxwell equations solver implemented
in the COMSOL Multiphysics® software [63]. The first row
shows the diagonal functions (in logarithmic scale), i.e.,
Jnn(𝜔), which correspond to the “conventional” spectral

Figure 1: Generalized spectral densities for z-oriented emitters at Gap, Top and Bottom positions (thick black line), fitted model spectral
density (orange line), and spectral density when the microsphere is replaced by a dielectric background (green line). Inset: Sketch of the
system consisting of a silver dimer nanoantenna embedded in a dielectric microsphere (with the same dimensions as in ref. [1]). The red dots
show the position of each emitter.
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densities, while the second row shows the off-diagonal
functions, J12(𝜔), J13(𝜔), and J23(𝜔), which encode the
field-mediated interaction between the emitters. As Top
and Bottom are symmetric positions with respect to the
plasmonic nanoparticles, both their diagonal elements
and their interaction with the emitter in Gap behave quite
similarly, with slight differences due to the nonsymmetric
placement of the dielectric sphere.

In itsmostgeneral form, therearenorestrictionsonthe
form of H̃ apart from symmetry. However, it is possible to
choose any desired structure, e.g., inspired by the physical
structure of the problem, to restrict the number of free
parameters. In ref. [59], we recently showed that for the
one-emitter case, it is generally sufficient to use a chain
form with only next-nearest neighbor coupling between
the modes (i.e., H̃i j = 0 if |i− j| > 2), although this choice
makes itmore challenging toobtain convergedfits.Wehere
instead choose a block-diagonal form,

H̃ =
⎛
⎜⎜⎝

H̃1 0 0
0 H̃2 0
0 0 H̃3

⎞
⎟⎟⎠
, (14)

where H̃i are full Ni × Ni matrices. This form allows to
significantly decrease the number of parameters while still
giving a good fit for the spectral density. The physical
reasoning behind this election is that there are many
independent modes in the system that do not interfere
significantly (e.g., thehigh-order“pseudomodes”coupling
to each emitter [32]), and it is thus not necessary to allow
arbitrary couplings betweenallmodes. In thepresent case,
the size of each block was chosen as Ni = 14, giving a
total of N = ∑

i Ni = 42 modes. We note that while this
is not a small number per se, this number of modes is
enough to represent the complex EM environment over
the full spectral range shown in Figure 1, which contains
many physical resonances. If only a restricted frequency
range is of interest, the fit could be performed only within
that range, or alternatively, adiabatic elimination of highly
detuned modes could be performed after the fitting.

The orange lines in Figure 1 show the model spectral
density obtained after fitting. Despite the complexity of
the structure and the spectral densities, the fit is well
converged with a relatively small number of modes. The
small differences to the numerical spectral density visible
at low frequencies for the diagonal functions and at high
frequencies for the nondiagonal ones could be reduced by
increasing the number of modes employed in the fit but
were found not to affect the dynamics studied in this work.

In Figure 1, we additionally show the spectral density
corresponding to the two plasmonic nanoparticles when

the sphere is replaced by an infinite GaP background
medium (green lines). In this case, Top and Bottom
are completely equivalent positions, and their spectral
densities are identical. Additionally, this change removes
the Mie resonances supported by the sphere, such that
the spectral density is overall much simpler and contains
fewer peaks. In particular, there are no visible interfer-
ence structures, and the spectral density corresponds to
a series of broad but mostly independent modes. The
fitting procedure then converges much more easily and
achieves evenbetter agreementwith thenumerical results,
with | mod(𝜔)−  (𝜔)| < 0.015 meV over the full spectral
range of Figure 1 using N = 30 modes. As the fit is visually
indistinguishable from the exact spectral density, it is not
shown separately in Figure 1.

In order to benchmark the method, Figure 2 shows
the dynamics of all emitters for the Wigner–Weisskopf
problem of spontaneous emission for the Gap emitter, i.e.,
when it is initially in the excited state, while the Top and
Bottom emitters are in the ground state and all the EMfield
is in the vacuum, so that |𝜓(t = 0)⟩ = 𝜎+Gap|0⟩. We choose
emitterswith frequencies close to the lowest-energy hybrid
modes at ≈ 1.14 eV. In this case, 𝜔Top = 𝜔Bottom = 1.14 eV,
while 𝜔Gap = 1.143 eV, so that the Lamb-shifted emitters
are close to resonance (as discussed below). The dynamics
predicted by ourmodel (white dashed lines in Figure 2) are
compared to the ones given by a direct discretization of the
Hamiltonian based on emitted-centered modes (Eq. (21) in
ref. [18]). Once the fit of the spectral density is converged
withsufficientaccuracy, there isanalmostexactagreement
of the emitter dynamics. Although the strength of the

Figure 2: Population of Gap (orange), Top (blue) and Bottom (red)
emitters within the hybrid metallodielectric system shown in
Figure 1 when Gap is initially (t = 0) excited, while Top and Bottom
are in their ground states. The colored lines correspond to a direct
discretization of the photon continua in frequency, while the white
dashed lines correspond to the dynamics predicted by the model.
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coupling is not large enough to unambiguously reach the
strong coupling regime, there are clear oscillations in the
population of the Gap emitter, which are perfectly repro-
duced by the few-mode model, demonstrating explicitly
that themodel is not restricted toweakcoupling situations.

We now study the energy transfer dynamics between
the emitters, with a focus on how it is influenced by the
formation of hybrid modes. The upper inset in Figure 3(a)
shows the spectral density of the Gap emitter in that
frequency range, both for the hybrid metallodielectric
cavity (orange line) and for theplasmonicdimer embedded
in an infinite dielectricmedium (green line). For the hybrid
cavity, there is significantmode hybridization and destruc-
tive interference around that frequency, while for the bare
dimer, only a single broad resonance peak appears. We
note here that within this model, the system is assumed
to be at zero temperature, so that pure dephasing is
neglected. Furthermore, while we do not explicitly include
external driving, this could be done straightforwardly
[18, 53]. Similarly, we only study the emitter dynamics,
but the emitted EM field could be explicitly obtained using
the approach shown in [1]. For completeness, we mention
that high-order correlations of the EM fields are somewhat
cumbersome to obtain within that approach.

We first investigate population transfer from a coher-
ent superposition of the Top and Bottom emitters to the
Gap emitter, as schematically shown in the lower insets
of Figure 3. To be precise, we calculate the dynamics
for an initial state |𝜓0⟩ = 1√

2

(
𝜎+Top + 𝜎

+
Bottom

)
|0⟩. We fix

the frequencies of the Top and Bottom emitters to be
equal, 𝜔Top = 𝜔Bottom = 𝜔0 and vary the frequency of the
Gap emitter, 𝜔Gap = 𝜔0 + 𝛿𝜔. The population PGap(t) =
⟨𝜎+Gap𝜎−Gap⟩ as a function of time and 𝛿𝜔 is shown for three
distinct values of 𝜔0, indicated by the dark red arrows
in the upper inset of Figure 3. Panel (a) corresponds to

the case of a dielectric background, for which we only
consider𝜔0 = 1.142 eV (the results for the other two values
are very similar due to the broad nature of the peak). We
find significant excitation of the Gap emitter for a narrow
range of frequencies, which however does not coincide
with 𝛿𝜔 = 0 as could be naively expected. This is due to
the fact that the EMmodes induce a significant Lamb shift
on the emitters, which is larger for the Top and Bottom
emitters due to their higher dipole moments (even though
the EM mode density at the Gap position is higher due
to the interaction with both ellipsoids). Their effective
frequencies are thus lowered more than that of the Gap
emitter, and resonant energy transfer is onlypossiblewhen
the Gap emitter is detuned to a slightly lower frequency,
𝛿𝜔 ≈ −3 meV.

In panel (b), we explore the situation for the hybrid
cavity, where the peak splits due to interaction between
the Mie resonances of the microsphere and the plasmonic
dimer modes. Since the spectral density here has signifi-
cantly more structure, we explore the energy transfer for
three values of 𝜔0: 1.132 eV, 1.14 eV, and 1.142 eV. As
shown in Figure 3(b), these small changes in frequency
have a significant effect on the efficiency of energy transfer
even when the detuning is optimized to compensate for
the difference in Lamb shifts. In particular, the maximum
population reaching the Gap emitter is decreased by a
factor of more than two when changing𝜔0 by just 10 meV.
This demonstrates both the sensitivity of energy transfer
at the nanoscale to the details of the EM environment and
the large degree of control that hybrid metallodielectric
structures offer for influencing emitter dynamics. We also
note that even though the emitters are not in the regime
of strong light–matter coupling (no Rabi oscillations are
visible on resonance), the effects observed here could
not be reproduced with traditional methods based on the
weak-coupling approximation [64–67]. In that approach,

(a) (b)

Figure 3: Population transfer to Gap when Top and Bottom are fixed at a frequency 𝜔0 and Gap is detuned from that frequency. The initial
state 𝜓0 is a superposition of Top and Bottom excited, as shown in both sketches in subplots (a) for the dielectric background and (b) for the
dielectric sphere, where three different frequencies are considered (shown in each subplot). The upper inset in subplot (a) shows the
spectral density of the Gap emitter around the hybrid mode for the dielectric sphere (orange line) and the dielectric background (green line).
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the EM environment is traced out fully, with the real and
imaginary parts of the Green’s function giving coherent
and incoherent interactions between emitters (with the
diagonal parts corresponding to Lamb shifts and decay
rates). However, that approach is only valid when the
Green’s function is approximately constant over the fre-
quency range spanned by the emitters (and the emitters
are two-level systems characterized by a single frequency).
It furthermore evaluates the Green’s function at the bare
emitter frequencies and thus also becomes invalid if the
Green’s functionvaries significantlyovera frequency range
comparable to theEM-induced shifts. For highly structured
spectral densities as in the present case, this can be
a significant source of error. We additionally note that
the effects discussed here are not correctly represented
either when only the EM modes close to resonance with
the emitters are taken into account, as the Lamb shift
is dominated by off-resonant contributions. Of course,
these considerations do not imply that it would be in
principle impossible to obtain a simpler approximate
master equation that also describes the dynamics for
any specific situation accurately. However, one important
advantage of our current approach is that it is general
and expected to work for any combination of emitter
structures, energies, and orientations, i.e., it does not rely
on any specific assumptions about the EM mode structure
or emitter properties.

Next, we study energy transfer from the Top to the
Bottom emitter, as depicted schematically in the insets
of Figure 4. We use the same system and parameters as
in the previous setup but now initialize the system in
|𝜓0⟩ = 𝜎+Top|0⟩ and monitor the population PBottom(t) =
⟨𝜎+Bottom𝜎−Bottom⟩. Panel (a) in Figure 4 again shows this for
the purely plasmonic nanocavity. Population transferred
to Bottom is then essentially unaffected by the presence of
theGapemitter unless that emitter is on resonancewith the
others (after taking into account the differing Lamb shifts).

On resonance, energy transfer is significantly suppressed
and theGapemitter acts likean intermediateabsorber. This
simple picture is againmostly independent of𝜔0, so only a
single value is shown in Figure 4(a). However, in the hybrid
cavity, Figure 4(b), the picture changes drastically. In that
case, the intermediate emitter can act to either enhance
or suppress the population transfer depending on 𝜔0 and
𝛿𝜔, with a clear asymmetry with regard to the sign of 𝛿𝜔.
For 𝜔0 = 1.14 eV, the maximum population reaching the
Bottom emitter has a clear Fano-like interference shape
with a maximum followed by a steep minimum as a
function of 𝛿𝜔. When the frequency of the Top and Bottom
emitters is further increasedby just 2meV, to𝜔0 = 1.142 eV,
the minimum essentially disappears and the presence of
the Gap emitter on resonance leads to an enhancement
of energy transfer. We thus find that within a narrow
frequency range, the hybrid modes offer the possibility to
change the role of the Gap emitter from inhibiting energy
transfer between two emitters to enhancing it.

Finally, we study how the energy transfer from the
Top to the Bottom emitter changes when the Gap emitter is
excited as well, i.e., for the initial state |𝜓0⟩ = 𝜎+Top𝜎+Gap|0⟩.
We here choose 𝜔0 = 1.142 eV, corresponding to the final
dataset in Figure 4(b), and choose the frequency of the
Gap emitter so that in the single-excitation case studied
previously, the population transfer to the Bottom emitter is
maximized, achieved for 𝛿𝜔 = −3.18 meV. Figure 5 shows
PBottom(t) for the three cases where Gap is initially in its
ground state (black line, same data as Figure 4), excited
state (orange line), or is not present at all (dashed blue
line). When the Gap emitter is initially excited, there is fast
initial population transfer (presumably directly from the
Gap to the Bottom emitter), but the maximum population
reached is significantly lower than for the previous situ-
ation where energy transfer is enhanced by the presence
of the (ground-state) Gap emitter. In particular, when the
Gapemitter is initially excited, themaximumpopulation in

(a) (b)

Figure 4: Population transfer to Bottom when Top and Bottom are fixed at a frequency𝜔0 and Gap is detuned from that frequency. The initial
state 𝜓0 corresponds to only Top excited, as shown in both sketches in subplots (a) for the dielectric background and (b) for the dielectric
sphere (shown in each subplot).
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Figure 5: Population of Bottom for two-photon emission (black line)
and one-photon emission (orange line) when Top and Bottom have
frequencies𝜔0 = 1.142 eV and Gap is detuned 𝛿𝜔 = −3.78 meV.

Bottom remains smaller than for the case where no emitter
is present in the Gap. This shows that the energy transfer
between the Top and Bottom emitters can be controlled by
exciting the emitter in the Gap, pointing toward a possible
path for implementing quantum gates based on hybrid
metallodielectric structures.

4 Conclusions
In this article, we have introduced an extension of the
few-mode field quantization approach we recently devel-
oped [1] to the case of several emitters. We have first
demonstrated how to define and obtain the generalized
spectral density  (𝜔), a matrix-valued function that fully
determines the properties of the EM environment inter-
acting with the emitters. We have then shown how to
obtain a few-mode quantization of the EM field in this
situation. The resultingmodel can be adjusted to represent
a wide range of nanophotonic structures by fitting the
model parameters to reproduce the numerically calculated
generalized spectral densities (which requires only the
calculation of the dyadic Green’s function of Maxwell’s
equations and can be done with any standard EM solver).

We illustrated the approach in a metallodielectric
structure consisting of a metallic dimer embedded in a
dielectric sphere, which produces a complex generalized
spectral density, with N = 42 modes required to obtain a
well-converged representation of the generalized spectral
density. Once the fit is obtained, the emitter dynamics
can be calculated using standard approaches of quantum
optics such as solving the Lindblad master equation.
We used this to study energy transfer between three

emitters in three different situations and found that hybrid
metallodielectric structures can enable significant control,
strongly enhancing or suppressing energy transfer for
slight variations of the emitter parameters.
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