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Photon statistics in collective strong coupling: Nanocavities and microcavities
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There exists a growing interest in the properties of the light generated by hybrid systems involving a
mesoscopic number of emitters as a means of providing macroscopic quantum light sources. In this work,
the quantum correlations of the light emitted by a collection of emitters coupled to a generic optical cavity
are studied theoretically using an effective Hamiltonian approach. Starting from the single-emitter level, we
analyze the persistence of photon antibunching as the ensemble size increases. Not only is the photon blockade
effect identifiable, but photon antibunching originated from destructive interference processes, the so-called
unconventional antibunching, is also present. We study the dependence of these two types of negative correlations
on the spectral detuning between cavity and emitters, as well as its evolution as the time delay between
photon detections increases. Throughout this work, the performance of plasmonic nanocavities and dielectric
microcavities is compared: despite the distinct energy scales and the differences introduced by their respectively
open and closed character, the bunching and antibunching phenomenology presents remarkable similarities in
both types of cavities.
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I. INTRODUCTION

The field of cavity quantum electrodynamics studies phe-
nomena arising from the interaction between matter and light,
the latter in the form of electromagnetic modes confined in a
cavity, in the regime in which the quantum nature of the light is
unveiled [1]. The matter component commonly involves two-
level systems, which describe a wide variety of emitters (from
real spins to quantum dots, atoms, molecules, NV centers, or
qubits, among others) as long as the state of the system can
be properly represented by a two-dimensional Hilbert space.
The most simple case of a single two-level system coupled to a
quantized cavity mode is described by the Jaynes-Cummings
model [2], later extended to an arbitrary number of emitters in
the so-called Tavis-Cummings model [3]. These Hamiltonians,
together with specific procedures to introduce the effect of
losses [4], provide a theoretical description for a broad variety
of configurations.

The interaction of light with a collection of quantum emit-
ters has been intensively studied considering an extensive range
of systems since it is of broad interest in research areas ranging
from lasing [5,6] and superradiance [7,8] to nonclassical light
generation [9], entanglement [10], or quantum information
processing [11,12]. In fact, there are several optical cavity
configurations capable of supporting an electromagnetic mode
through semiconductor, metal, or dielectric structures, suiting
thereby the specific requirements. From high-quality optical
microcavities [1,13] (consisting in different planar configura-
tions [14,15], whispering galleries [16,17], or photonic-crystal
cavities [18–20], to name a few), the aim to reach higher
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light-matter couplings, especially on the route towards room-
temperature devices, has led to the reduction of the effective
volume even below the diffraction limit of classical optics. This
has given rise to nanocavities built on the basis of plasmonic
nanostructures. The price to pay for the large confinement
is that these structures suffer from large dissipative losses,
reducing in turn the quality factor of the cavity.

The balance between coupling strength and losses leads
to the well-known distinction between the weak and strong
coupling regimes. Within the weak coupling regime, the prin-
cipal feature consists in the enhancement of the spontaneous
emission owing to the coupling of the emitters to the resonant
cavity, known as the Purcell effect [21]. On the contrary, if
the matter-field interaction becomes larger than the emitter
and cavity relaxation rates, the system may enter the strong
coupling regime, in which the genuine eigenstates turn out to
be a quantum mixture of matter and light. These are referred to
as dressed states or polaritons, arising due to the rapid exchange
of energy between cavity and emitters. The regime of strong
coupling has been demonstrated experimentally for systems
involving a large amount of emitters for microcavities [22,23]
as well as for plasmonic nanocavities [24,25]. Reaching this
regime by involving just a single emitter becomes more
challenging since it requires a cavity with a higher quality
factor or stronger field confinement. While experimental real-
izations of single-emitter strong coupling have been reported
in microcavities [26,27] and photonic crystals [28] in the past,
only recently has the strong coupling regime been reached in
plasmonic nanocavities with a single molecule [29,30]. Note
that by varying the number of emitters, the system can be
naturally tuned from one regime to the other; in these hybrid
systems, the participation of a collection ofN quantum emitters
makes the interaction stronger through the appearance of the
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characteristic
√

N factor in the effective collective coupling
strength [31].

Whereas coupling a large amount of emitters to a nanocavity
mode is not difficult from the experimental perspective, ad-
dressing the complete problem theoretically presents a signif-
icant challenge. There have been some theoretical advances in
the treatment of plasmonic strong coupling for large ensembles
of emitters in the vanishing population regime [32]. There,
the fermionic character of quantum emitters can be neglected
by modeling them as bosonic harmonic oscillators and, thus,
by disregarding excitonic nonlinearities and any saturation
effects emerging in the photon population dynamics for the
system. One step beyond this completely bosonic description
was also carried out through the so-called Holstein-Primakoff
approach [33,34], which is equivalent to introducing a macro-
scopic third-order susceptibility for the medium embedding
the emitter ensemble [35]. Very recently, we proposed a theo-
retical framework [36] able to describe plasmon-exciton strong
coupling for a mesoscopic number of quantum emitters which
fully accounted for their fermionic character. It is precisely the
inherent quantum nonlinear character of emitters that forms the
basis of many interesting phenomena when coupling light and
matter, such as the well-known photon antibunching [37]. In
general, intensity correlations of the emitted light are related to
the probability of detecting coincident photons, so that it is used
as a quantifier of multiple-photon events (the suppression of
which is an important requirement for single-photon emission).
Importantly, although this magnitude has been extensively
used to discriminate single-photon sources, some recent papers
point out that this is not by itself a reliable indicator [38].

Nonclassical light generation is extremely important in the
fields of quantum cryptography [39], quantum sensing [40],
quantum metrology [41], or quantum communication [42],
among other emerging photonic quantum technologies. The
production of single photons on demand has focused great
efforts, and different methods have been used for its ex-
traction [43], such as faint laser pulses [44], single-emitter
systems [45–47], nonlinear crystals [48], or parametric down-
conversion [49]. All these exploit the inherent nonlinearity of
the photonic system. When using a large number of emitters,
their collective response becomes approximately bosonic and
nonclassical light is supposed not to be generated. Neverthe-
less, it has been shown that when considering a mesoscopic
number of emitters, these nonlinearities can be preserved and
antibunched light may still be produced [50–52]. Much effort
has been devoted to the analysis of the evolution of the quantum
statistical properties of the light emitted by hybrid systems
for increasing number of emitters, assessing the possibility
of generating nonclassical light with mesoscopic ensembles.
Some studies involve just a few quantum emitters [53,54],
and others consider a huge amount under particular simplifica-
tions [55–57]. From a technical perspective, there exist brute-
force approaches based on Monte Carlo techniques [58,59],
and developments towards the efficient treatment of large
ensembles [60] thanks to the use of symmetries.

In this article, we study the coherence properties of the light
radiated by a collection of N identical quantum emitters placed
inside a generic optical cavity when the system is coherently
pumped by a laser. Two paradigmatic configurations are

explored, namely, a collection of quantum dots coupled to a
dielectric microcavity, and an ensemble of organic molecules
within a plasmonic nanocavity (note that the pumping and
the emission differ according to the open or closed character,
respectively, of these systems). Whereas the former have been
extensively investigated within the field of semiconductor
quantum electrodynamics over the last two decades, the ex-
ploration of the latter for quantum optical purposes is still in
a very early stage. To our knowledge, this article provides the
first comparative study between both physical platforms for
nonclassical light generation. In order to perform a meaningful
comparison between both physical systems, we treat them in
the same footing. In turn, this means that aspects that may
be relevant in specific experimental implementations of both
configurations, such as spatial and spectral inhomogeneities or
emitter-emitter interactions, are neglected. The statistics of the
emitted light are analyzed for these two cases determining the
parameter ranges in which photon bunching and antibunching
appear. In particular, the focus is on the two effects that can lead
to single-photon emission: the well-known photon blockade
effect and the so-called unconventional antibunching, which
originates from interference effects and is thus here referred
to as interference-induced correlations. On the basis of the
quantum master equation for the extended Tavis-Cummings
model, analytical and numerical computations are performed
by using an effective Hamiltonian approach.

Our theoretical framework is described in Sec. II, beginning
with the introduction of the two systems under consideration
and their modeling (Sec. II A). The procedure to determine
the steady state of the system (Sec. II B) and compute the
correlation functions (Sec. II C) is described next. In Sec. III,
we present a comprehensive analysis of photon statistics for
realistic plasmonic nanocavities and dielectric microcavities.
First, the intensity and second-order correlation function of
the emitted light are explored for various ensemble sizes
(Sec. III A), and analytical expressions for these magnitudes for
both cavity configurations are provided. Then, the two different
mechanisms leading to sub-Poissonian light are studied in
detail (Sec. III B), followed by the analysis of the effect of
spectral detuning between cavity and emitters on the photon
correlations (Sec. III C). The evolution of the second-order
correlation function at time delays different from zero is also
investigated (Sec. III D). Finally, the conclusions of the work
are presented in Sec. IV.

II. THEORETICAL FRAMEWORK

A. System

The system under study consists of N quantum emitters,
modeled as simple two-level systems with a ground |gn〉
and an excited state |en〉, located in an optical cavity. Every
emitter is coupled to a quantized single-cavity mode through
the electric-dipole interaction, and they are considered not
to interact among them apart from through the cavity mode
(note that emitter-emitter interactions become significant only
in dense ensembles [36]). A laser field coherently pumps
the system, and the emitted light is collected in a detector
located in the far field. An illustration of the system is depicted
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FIG. 1. Scheme of the systems, composed of a collection of
quantum emitters coupled to an electromagnetic mode supported
by either a nanocavity (left) or a microcavity (right). The set of
parameters characterizing the system are sketched.

in Fig. 1, where the two cases of a nanocavity (left) and a
microcavity (right) cavity are distinguished. Both the pumping
and the emission vary according to the corresponding open or
closed character: whereas for nanocavities the entire system is
pumped and the radiation from both the quantum emitters and
the cavity is observed (open configuration), in microcavities
the coupling to the outside mode is mediated by the mirrors,
such that only the cavity mode is pumped and only its emission
is received at the detector (closed configuration). Apart from
this fundamental distinction, the size and characteristic losses
are also differentiating features between these two types
of cavities. By nanocavities, we are referring to plasmonic
cavities [61–64], where the spatial dimensions are reduced to
the nanometer scale and cavity losses are substantial (∼0.1 eV)
[65]. In contrast, by microcavities we refer here to photonic
crystals [20,66] and other semiconductor structures [27,67]
with sizes of the order of micrometers and whose absorption
is much lower (∼0.1 meV) [13].

The Hamiltonian of the total system involves the excitation
of both the cavity mode (with transition frequency ωC and
bosonic creation and annihilation operators a† and a) and the
collection of N quantum emitters (with transition frequency
ωn and creation and annihilation operators σ

†
n = |en〉〈gn| and

σn = |gn〉〈en| for the nth emitter which, in turn, define the
operator σ z

n = [σ †
n , σn]/2), as well as the coherent pumping of

a laser of frequency ωL. In the Schrödinger picture, it reads as
(from now on, h̄ = 1)

H = ωC a†a +
N∑

n=1

ωnσ
z
n +

N∑
n=1

λn(a†σn + aσ †
n )

+�C(a† e−iωLt + a eiωLt )

+
N∑

n=1

�n(σ †
n e−iωLt + σn eiωLt ), (1)

where λn is the coupling between the nth quantum emitter
and the cavity mode, and �C and �n are the laser pumping to
the cavity mode and the nth quantum emitter, respectively.
If we define the effective dipole moments associated with
the cavity μC and with the nth emitter μn, these pumping

frequencies can be expressed in terms of the laser field intensity
EL as �C = EL · μC and �n = EL · μn. In the description of
a microcavity, only the cavity is pumped, hence, we set �n = 0
for all n. Although dipole-dipole interactions between emitters
may become important in the nanocavity configuration when
having a very dense emitter ensemble, this term will be
neglected in the following either way as its inclusion does
not affect significantly the conclusions drawn from our results
(see discussion in Ref. [36]). Note also that the rotating wave
approximation [68] has been introduced in Eq. (1), which
implies that the emitter-cavity coupling is low enough to
disregard the fast-rotating terms.

Through the coherent excitation, the Hamiltonian (1) ac-
quires an explicit dependence on time, which can be easily
removed by transforming it into a rotating frame. By means of
the unitary operator U0(t ) = exp[−iAt], with A = ωLa†a +∑N

n=1 ωLσ z
n , the Hamiltonian in the transformed frame H̃ =

U†
0HU0 − A becomes

H̃ = �C a†a +
N∑

n=1

�nσ
z
n +

N∑
n=1

λn(a†σn + aσ †
n )

+�C(a† + a) +
N∑

n=1

�n(σ †
n + σn), (2)

where the detunings from the laser corresponding to the cavity
mode �C = ωC − ωL and the nth quantum emitter �n = ωn −
ωL have been defined.

When all quantum emitters have the same transition fre-
quency ωQE (consequently, the same detuning �QE = ωQE −
ωL) and equal couplings to the cavity λ and to the laser field
�QE = EL · μQE, the above expression for the Hamiltonian (2)
reduces to

H̃ = �C a†a + �QESz + λ(a†S− + aS+)

+�C(a† + a) + �QE(S+ + S−), (3)

where the bright mode creation and annihilation operators
S+ = ∑N

n=1 σ
†
n and S− = (S+)†, together with the operator

Sz = ∑N
n=1 σ z

n , have been introduced for this set of N emitters.
These collective operators behave like standard spin-N/2
operators. Note that the coupling λ is just the interaction
between the emitter dipole moment and the near field of the
cavity, that is, λ = EC · μQE. Some tests beyond these as-
sumptions, treating the emitters and their respective couplings
individually, can be found in Ref. [36].

B. Steady state of the system

To study the properties of the emitted light, we first need to
determine the steady state of the system. The time evolution
of the density matrix ρ describing the system is governed by
the following master equation:

d

dt
ρ = −i [H̃ , ρ] + γC

2
La[ρ] + γ r

QE

2
LS− [ρ]

+
N∑

n=1

γ nr
QE

2
Lσn

[ρ] , (4)
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where the Lindblad terms, given byLO = 2OρO† − O†Oρ −
ρO†O for an arbitrary operatorO, account for the losses arising
from both cavity and quantum emitters (with decay rates γC

and γQE, respectively). The superscripts stand for radiative (r)
and nonradiative (nr) damping. Note that while all cavity losses
are included in La , two different terms have to be added for
the quantum emitters: radiative losses are described through
the bright mode operator S− (corresponding to the assumption
that the emitters are at subwavelength distances and thus radiate
like a collective dipole), but nonradiative losses are assigned
to single emitters. Therefore, it is the single-atom operator σn

that is involved in the latter case.
In the regime of sufficiently low driving intensity, the con-

tribution of the so-called refilling or feeding terms OρO† ap-
pearing in the Lindblad superoperators remains negligible [36].
When they are removed, the Lindblad master equation (4)
becomes equivalent to the Schrödinger equation d|ψ〉/dt =
−iHeff |ψ〉 with an effective Hamiltonian

Heff = H̃ − i
γC

2
a†a − i

γ r
QE

2
S+S− − i

γ nr
QE

2
Sz, (5)

where H̃ is given by Eq. (3). In this effective Hamiltonian, only
bright mode operators appear. Within this approach, the dark
states of the ensemble, superpositions of the quantum emitter
excitations that do not couple to the cavity or the external
light, can thus be disregarded without further approximation.
This corresponds to a crucial reduction in numerical effort
when considering a large number of emitters N : instead
of having to consider N and N (N − 1) states in the one-
and two-excitation manifolds, respectively, only one singly
and one doubly excited bright state,

∑N
n=1 σ

†
n |0〉/√N and∑N

n,m=1 σ
†
nσ

†
m|0〉/√N (N − 1) (with n �= m), play a role.

In the low pumping regime, we can perturbatively solve
the Schrödinger equation Heff|ψ〉 = 0 (equivalent to solving
for the steady-state solution of the master equation dρ/dt =
0). Considering the incident laser amplitude EL as the small
parameter, the effective Hamiltonian (5) can be split as Heff =
H0 + ELV , where the second term is the driving:

ELV = �C(a† + a) + �QE(S+ + S−). (6)

The steady state |ψ〉 can also be expanded in a power series of
EL, |ψ〉 = ∑

k=0 Ek
L|ψk〉. Substituting these expansions into

the equation Heff|ψ〉 = 0 and grouping terms for each power
of EL results in a set of linear equations. The zeroth-order
equation leads simply to |ψ0〉 = |0〉 (that is, the ground state,
which represents no excitations in the system) whereas the kth-
order equation turns out to be H0|ψk〉 + V |ψk−1〉 = 0. These
equations can be successively solved so that the steady state is
finally obtained from this perturbative approach.

C. First- and second-order correlation functions

Once the steady state is known, the correlation properties of
the emitted light can be calculated. The negative-frequency part
of the scattered far-field operator at the detector E−

D depends
on the type of cavity we consider: while for nanocavities
the radiation from both cavity and quantum emitters is taken
into account, E−

D ∝ μCa† + μQES+, for microcavities just the
emission coming from the cavity is detected, E−

D ∝ μCa†.

This reflects the open or closed character of each type of
cavity. Note that the differences between the electromagnetic
Green’s function describing the emission from the cavity and
the various emitters in nanocavities can be neglected due to
their deeply subwavelength dimensions. The light intensity at
a given point I (r, t ) is defined in terms of the electric field
operator as

I (r, t ) = 〈E−
D (r, t )E+

D (r, t )〉 (7)

and the two-time second-order correlator G(2) and its normal-
ized version g(2) are given by [69]

G(2)(r1, t1; r2, t2)

= 〈E−
D (r1, t1)E−

D (r2, t2)E+
D (r2, t2)E+

D (r1, t1)〉, (8)

g(2)(r1, t1; r2, t2) = G(2)(r1, t1; r2, t2)

I (r1, t1)I (r2, t2)
,

where 〈. . .〉 denotes time average. The latter is related to the
(conditional) probability of detecting a photon in the detector
placed at r2 at time t2 once a photon has reached the detector
placed at r1 at time t1. Considering a fixed position, it can be
rewritten in terms of the time delay τ = t2 − t1 as

g(2)(τ ) = 〈E−
D (t )E−

D (t + τ )E+
D (t + τ )E+

D (t )〉
I (t )I (t + τ )

, (9)

which does not depend on time t in the steady state. Note that
for τ = 0, it yields the probability of detecting two coinci-
dent photons. When g(2)(τ ) < g(2)(0), registering two photon
counts with a delay τ is less likely than the observation of two
simultaneous photons. This is known as photon bunching since
photons tend to be distributed close together, in “bunches,”
instead of being located further apart. The opposite situation is
given when g(2)(τ ) > g(2)(0), known as photon antibunching,
where photons tend to arrive at different times. For a coherent
source of light, g(2)(τ ) = 1 for all τ , which means that photons
arrive independently from one another at the detector [note
that g(2)(τ ) → 1 when τ → ∞ for any light source], leading
to a Poissonian distribution of arrival times. The statistics of
the light is then said to be super-Poissonian [g(2)(0) > 1]
or sub-Poissonian [g(2)(0) < 1] if the coincidence of two
photons at the detector is, respectively, more or less likely than
that for a coherent light source (random case). The concepts
of antibunching and sub-Poissonian statistics are often not
distinguished in the literature since they usually occur together.
Nevertheless, they are not equivalent concepts but reflect
distinct effects; indeed, sub-Poissonian statistics can take place
together with bunching [70]. Since the evolution of g(2)(τ )
with time delay is explored in this article, we distinguish them
rigorously throughout the text to avoid misunderstandings.
All the same, both antibunching and sub-Poissonian statistics
are phenomena related to nonclassical light, as the conditions
defining them cannot be fulfilled for classical fields [71].
Therefore, they offer a means to measure the classicality or
quantumness of light.

The first- and second-order correlation functions can be
evaluated by considering the perturbative solution for the
steady state of the system described above. The scatter-
ing intensity I and the normalized zero-delay second-order
correlation function g(2)(0) in the steady state are thus
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computed as

I = 〈ψ1|E−
D E+

D |ψ1〉,
g(2)(0) = 〈ψ2|E−

D E−
D E+

D E+
D |ψ2〉/I 2. (10)

From these equations, it follows that our perturbative calcu-
lations can be restricted to second order, and we can truncate
the Hilbert space at the two-excitation manifold. To compute
the second-order correlation function g(2)(τ ), the evolution
operator U (t ) = exp[−iHefft] has to be introduced:

g(2)(τ ) = 〈E−
D (0)E−

D (τ )E+
D (τ )E+

D (0)〉/I 2

= 〈ψ |E−
DU†(τ )E−

D E+
DU (τ )E+

D |ψ〉/I 2, (11)

where E−
D ≡ E−

D (0), and the perturbative solution of |ψ〉 up
to second order is also used in the calculation.

III. RESULTS AND DISCUSSION

In the following, the theoretical framework presented in the
previous section is applied to study the coherence properties of
the light emitted by a collection of N quantum emitters coupled
to either a nanocavity or a microcavity, with the distinction in-
troduced before. Our attention is focused on resonant coupling,
setting ωC, ωQE ≡ ω0 = 3 eV in all cases (except in the section
where the effects of spectral detuning are explored). Beyond
that, we have to consider a specific set of parameters for each
system. The dissipation rate associated with the microcavity is
taken to be γC = 66 μeV (16 GHz) [9], which corresponds
to the spontaneous decay rate of a dipole moment μC =
3.1 e nm [72]. On the contrary, substantial nonradiative losses
are a distinctive feature of plasmonic cavities [61,73], hence,
we set γC = 0.1 eV (24 THz) for the nanocavity. This value
also incorporates the radiative losses corresponding to a dipole
with μC = 19 e nm, which mimics the cavity emission [74].
Regarding the emitters, we consider those typically used
in the experimental setups involving each cavity. First, the
quantum emitters usually located inside dielectric cavities are
characterized by negligible nonradiative losses, thus, γ nr

QE = 0.
In particular, we choose semiconductor quantum dots with
dipole moment μQE = 0.25 e nm, which corresponds to a ra-
diative decay rate γ r

QE = 0.41 μeV (0.10 GHz) [9]. Conversely,
the quantum emitters interacting with plasmonic nanocavities
are considered to be organic molecules with μQE = 1 e nm, and
presenting very low quantum yield. The specific rates chosen
for these emitters are γ nr

QE = 15 meV (3.6 THz) and γ r
QE =

6 μeV (1.5 GHz). Note that a rather large nonradiative decay
rate was considered in order to account for the quantum-yield
reduction experienced by organic molecules arranged in dense
ensembles [25]. A more extended study on the QE parameters
for the nanocavity case can be found in [36].

In our study, we assume that both open and closed cavities
operate at low temperature, which diminishes greatly the
impact of pure-dephasing processes in the dynamics of both
quantum dots [75] and organic molecules [76]. Accordingly,
we have not included this decoherence mechanism in our
theoretical model. Moreover, from here on and for simplicity,
we consider that the external laser field EL is parallel to both
the cavity and the quantum emitter dipole moments. Note that
this turns out to be the optimal configuration to enter the strong
coupling regime.

A. Intensity and coherence

The features of the light emerging from these two configu-
rations are studied first as a function of the number of emitters.
The intensity and the zero-delay second-order correlation
function for the steady state are computed from Eq. (10).
Although the numerical results displayed below depend on
the particular values of the parameters, the qualitative picture
we present is not bound to the specific configuration; on the
contrary, it remains the same when considering a wide range
of parameters describing realistic systems.

1. Plasmonic nanocavities

We consider first the nanocavity, where the light reaching
the detector comes from both the quantum emitters and the
cavity itself. Fig. 2 shows the scattering intensity I (top row)
and the zero-delay second-order correlation function g(2)(0)
(bottom row) for three different collections of emitters: N = 1
(a), 5 (b), and 25 (c). Both magnitudes are plotted as a function
of the laser detuning ωL − ω0 and the coupling strength λ,
which is expressed in units of the cavity decay rate γC.

In all intensity maps, two scattering maxima are observed,
which correspond to the polariton energies within the strong
coupling regime, that is, the eigenenergies of the dressed
states in the one-excitation manifold, the first rung of the
so-called Tavis-Cummings ladder. In this way, for each value
of the coupling strength we find two intensity peaks at laser
frequencies that match the lower (LP) and the upper (UP)
polariton energies. These dispersion curves are plotted in
dotted lines overlapping the maps, so that the correspondence
is easily observed. Note that these two maxima branches are
also apparent within the weak coupling regime, and thus this
presence cannot be regarded as an energy splitting. Its origin
actually lies in a Fano-like interference, appearing when two
signals with very different linewidths interact [77–79]. The
pronounced minimum in the scattering intensity is in this case
produced by the destructive interference between the cavity
and emitter emission.

Finally, observe the asymmetry between the two intensity
maxima branches: the one corresponding to the UP is distinctly
brighter. Note that the emission coming from each polariton
can be described from either the parallel (UP) or antiparallel
(LP) superposition of the dipole moments associated with the
plasmon and the bright mode of the emitter ensemble. Since the
dipole moment corresponding to the UP is larger, its emission
is more intense. This difference in the effective dipole moment
between LP and UP grows as N increases, as a consequence of
the greater collective dipole moment of the ensemble. Hence,
the contrast between branches becomes more pronounced for
larger ensemble sizes.

We can get a better understanding from the analytical results
obtained thanks to the perturbative approach described above.
The expression for the scattered intensity reads as

I ∝
∣∣∣∣∣�̃Cμ2

QE + �̃QEμ2
C/N − 2λμCμQE

�̃C�̃QE/N − λ2

∣∣∣∣∣
2

, (12)

where the detunings of the laser frequency from both
the cavity �C and the emitters �QE are redefined to in-
troduce the associated losses as �̃C = �C − iγC/2 and
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(a2) (b2) (c2)

(a1) (b1) (c1)

FIG. 2. Scattering intensity I (top row) and correlation function g(2)(0) (bottom row) versus laser detuning ωL − ω0 and coupling strength
λ (in units of the cavity decay rate γC) for a system of N = 1 (a), 5 (b), and 25 (c) quantum emitters coupled to a plasmonic nanocavity. In these
panels, dotted (dashed) lines plot the polariton frequencies (half-frequencies) in the one-excitation (two-excitation) manifold. Insets zoom into
the low coupling region. Magenta marks indicate points whose g(2)(τ ) is plotted in Fig. 8(a1).

�̃QE = �QE − i(γ nr
QE + Nγ r

QE)/2. This expression confirms
the origin of the intensity maxima: the condition for which
the denominator vanishes, λ2 = �̃C�̃QE/N , gives us the
dispersion of the LP and UP. Notice the

√
N dependence,

characteristic scaling of collective coupling. In addition, this
expression sheds light into the asymmetry in the branches: the
intensity behaves as I ∝ (1 ∓ √

NμQE/μC)2 for the LP (upper
sign) and UP (lower sign) when the losses from both cavity and
emitters are neglected.

The bottom row of Fig. 2 clearly shows areas of super-
Poissonian (yellow colored) as well as sub-Poissonian (blue
colored) statistics for all ensembles sizes. Focusing our atten-
tion first in the single-emitter case (N = 1), we distinguish
a main super-Poissonian area located between the LP and UP
energies (again depicted as dotted lines) for all coupling values.
Close to these polariton frequencies, but still far from the two-
excitation eigenenergies (depicted as dashed lines), regions
of sub-Poissonian light are found, being more pronounced as
the coupling strengthens. These correspond to the well-known
photon blockade effect, where the presence of an excitation in
the system prevents the absorption of a second photon at certain
frequencies due to the anharmonicity of the energy ladder.
Apart from these three stripes, we find another area of sub-
Poissonian emission that is enlarged in the corresponding inset.
It lies around the resonant frequency ωL = ω0. The mechanism

behind it was addressed theoretically in the context of dielectric
microcavities [80], the so-called unconventional antibunching.
Here, we employ the term interference-induced correlations
since it is the destructive interference among possible decay
paths that produces the suppression of two-photon processes
and hence the drop of g(2)(0) below one [81,82]. In the
following section, these two different types of sub-Poissonian
light are discussed in further detail.

The statistical features observed for single emitters are also
present for larger N . As we already pointed out in Ref. [36],
photon correlations arising at the single-emitter level remain,
and can even be enhanced as the ensemble size increases.
This is observed in the panels corresponding to N = 5 and
25 in Fig. 2. The area of bunched light remains between the
one-excitation eigenenergies, although it tends to approach
the LP branch when the number of emitters increases. This
tilt is also observed for the interference-induced correlation
area: the region of negative correlations shifts towards the
LP energy, while values for the function g(2)(0) below one
are still achieved within the same coupling range as for the
single-emitter case. Note that by increasing further the number
of emitters, the system eventually bosonizes [that is, it yields
g(2)(0) = 1]. The quantum character of the emitted light is then
lost. Focusing now on the region associated with the photon
blockade effect, we observe that the minimum following the
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FIG. 3. Scattering intensity I (top row) and correlation function g(2)(0) (bottom row) versus laser detuning ωL − ω0 for a system of N = 5
quantum emitters coupled to a plasmonic nanocavity for various coupling strengths λ with (a) and without (b) considering the pumping to and
the emission from the quantum emitters.

UP branch is deeper than the LP one. Nevertheless, it is
apparent how both fade for larger sizes of the emitter ensemble.
Indeed, for N = 25 there are a wide range of coupling strengths
where this effect is not observable. On the contrary, for
moderate values of the coupling, the dip corresponding to

interference effects is not only present, but becomes quite
pronounced.

From our perturbative approach, we can also obtain the
analytical expression for the correlation function g(2)(0) cor-
responding to an open nanocavity:

g(2)(0) =
∣∣∣∣∣∣1 − 1

N

(
�̃CμQE − λμC

�̃Cμ2
QE + �̃QEμ2

C/N − 2λμCμQE

)2 (
�̃QE + iNγ r

QE/2
)[

�̃C�̃QEμ2
QE + (�̃CμQE − λμC)2 − Nλ2μ2

QE

]
(
�̃QE + iγ r

QE/2
)(

�̃2
C + �̃C�̃QE − Nλ2

) − �̃C(N − 1)λ2

∣∣∣∣∣∣
2

,

(13)

where, again, we have made use of the redefined detunings �̃C

and �̃QE. We observe that, as expected, g(2)(0) → 1 when N

tends to infinity for a fixed value of the coupling strength, so the
expression does recover the bosonization limit. Notice also that
the denominator of the first term coincides with the numerator
of the analytical expression for the intensity [Eq. (12)], and the
vanishing condition for the denominator of the second term
yields the polaritons of the second rung of the Tavis-Cummings
ladder.

Considering the same cavity and emitters as in the plas-
monic case, we can explore the changes introduced when
quantum emitters are not directly pumped by the laser and
only the radiation coming from the cavity is registered at the
detector. This mimics the setup of a closed microcavity for
the parameter values distinctive of a plasmonic nanocavity.

Results for the intensity I and the correlation function g(2)(0)
for different values of the coupling strength λ are shown
in Fig. 3 for these two situations: with (a) and without (b)
considering both the pumping and the emission associated with
the quantum emitters. To make the comparison, we present
the particular case of a collection of N = 5 quantum emitters.
Therefore, the lines appearing in the left-hand column of Fig. 3
are just cuts of the maps (b1) and (b2) of Fig. 2 at four particular
values of the coupling strength.

First, we notice that the asymmetry in the two intensity
peaks is removed when considering only the emission from
the cavity. As commented before, for an open nanocavity, the
effective dipole moment of the LP and the UP are, respectively,
the parallel and antiparallel superpositions of those of the
cavity and the quantum emitters. This makes the emission of
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(a2) (b2) (c2)

(a1) (b1) (c1)

FIG. 4. Scattering intensity I (top row) and correlation function g(2)(0) (bottom row) versus laser detuning ωL − ω0 and coupling strength
λ (in units of the cavity decay rate γC) for a system of N = 1 (a), 5 (b), and 25 (c) quantum emitters coupled to a dielectric microcavity. In these
panels, dotted (dashed) lines plot the polariton frequencies (half-frequencies) in the one-excitation (two-excitation) manifold. Insets zoom into
the low coupling region. Magenta marks indicate points whose g(2)(τ ) is plotted in Fig. 8(b1).

the UP brighter, and it also introduces a noticeable dependence
on the number of emitters. On the contrary, in this new
configuration both polaritons radiate with the same associated
dipole moment (corresponding to the cavity, which is the same
regardless the ensemble size), and the associated emission is
thus identical. Notice also that the positions of the intensity
peaks are the same for open and closed configurations because
the polariton energies do not change.

The symmetry observed in the intensity patterns is also kept
in the correlation function g(2)(0). Apart from this difference,
the main features in the statistics are kept from the open
case, namely, first, around the zero value of the laser detuning
(ωL = ω0) there exists a dip for reduced coupling strength
whereas a maximum is developed as the interaction increases,
and second, for frequencies near the one-excitation polaritons,
the photon blockade effect is observable. From these cuts in
Fig. 3(a2), we confirm that the minimum following the UP
branch is the deepest.

Finally, note that there are two important features charac-
terizing the QEs in the nanocavity case that can affect the
results reported above: the nonradiative decay associated with
organic molecules in dense arrangements and the growing
emitter-emitter interactions due to the limited space in which
the ensemble is placed. It was already shown in [36] that
antibunching areas are favored by large emitter losses, thus, the
variation of this parameter would have an effect on the size of

the parametric area where strong negative photon correlations
occur. On the contrary, antibunching was shown to be quite
robust against dipole-dipole interactions between emitters, and
only when interaction becomes considerably large may the
degree of antibunching be slightly reduced.

2. Dielectric microcavities

Now, we consider the typical configuration of dielectric
microcavities, where only the cavity mode is pumped and direct
emission from the quantum emitters does not take place (closed
configuration). A study similar to the previous section is carried
out, determing the intensity I and the zero-delay second-order
correlation function g(2)(0). The results are shown in Fig. 4
for the same three cases: N = 1 (a), 5 (b), and 25 (c) quantum
emitters placed inside the cavity.

The intensity panels reveal again the presence of the two
polaritons when entering the strong coupling regime. The en-
ergies corresponding to the dressed states in the one-excitation
manifold are plotted in dotted lines, and they overlap the
intensity peaks. Nevertheless, in contrast to the nanocavity
configuration, these two intensity maxima are symmetric and
barely vary their height as the number of emitters increases.
As we have commented in the previous section, this is due to
the fact that only the emission from the cavity is registered, so
the effective radiating dipole moment is always the same.
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This underlying symmetry is also revealed in the analytical
expression of the intensity, computed from the perturbative
approach

I ∝
∣∣∣∣ �̃QEμ2

C/N

�̃C�̃QE/N − λ2

∣∣∣∣
2

. (14)

This expression can be reproduced from that corresponding to
nanocavities [Eq. (12)] just by considering the limit μQE → 0.
We observe that the denominator remains unchanged, so its
vanishing condition gives us again the energy dispersion for
the polaritons and hence the position of the intensity maxima.

The results for the correlation function g(2)(0) depicted in
the bottom row of Fig. 4 show a similar pattern to the ones found
for nanocavities (Fig. 2), although incorporating the symmetry
already expected. Around the zero laser detuning (ωL = ω0)
and for intermediate (or large) coupling strengths we find
super-Poissonian statistics (yellow colored). These panels also
show the two types of sub-Poissonian emission (blue colored)
previously observed: that associated with the phenomenon of
photon blockade, as well as that related to destructive interfer-
ence. The positions of the eigenenergies corresponding both to
the one- and two-excitation manifolds are plotted in dotted and
dashed lines, respectively, overlapping the correlation maps.
The frequencies where the photon blockade effect occurs are
easily relatable next to the dotted lines. Nevertheless, it is in the
other area of sub-Poissonian emission, the one associated with
interference effects, where the main difference between open
and closed cavities appears. Apart from the spectral symmetry
already discussed, the development of two dips instead of a
single one is the most apparent feature. For lower values of the
coupling strength, we find g(2)(0) = 1 at zero detuning, while
on both sides of this frequency, a window with sub-Poissonian
emission is visible. The presence of this double-dip pattern

disappears when introducing nonradiative losses associated
with the quantum emitters.

The evolution of correlations as the number of emitters
increases differs from the open nanocavity case. Apart from
the fact that symmetry modifies the laser frequencies at
which the different regions are achieved (for a specific value
of the coupling strength), the main variation concerns the sub-
Poissonian emission caused by destructive interference. These
areas are enlarged in the insets of Fig. 4. As the ensemble size
increases, the parameter ranges in which we find g(2)(0) < 1
clearly widen. Therefore, it is possible to obtain antibunched
emission for a specific coupling strength just by increasing the
number of emitters. Beyond a particular N , the system tends to
reach the bosonization limit, where g(2)(0) = 1. The onset of
this regime depends on the coupling strength between cavity
and emitters and, as seen in Fig. 4(c2), for N = 25 emitters we
still find significant negative correlations for a wide interval of
coupling values. Note that the photon blockade region does not
endure so long and it practically disappears for a few emitters
within this coupling range.

There exists a major aspect, not mentioned before, that
should be highlighted: the range of laser detunings at which
this nonclassical behavior is found is of the order of meV.
Notice that the energy scale in Fig. 4 differs in three orders
of magnitude from the one corresponding to nanocavities,
Fig. 2. Therefore, the spectral robustness and accessibility
of the antibunched regions is significantly different in open
and closed cavities, especially in the case of interference-
induced negative correlations. We anticipate that the spectrally
broad (narrow) nature of photon correlations in plasmonic
nanocavities (dielectric microcavities) implies a faster (slower)
temporal evolution of g(2)(τ ).

Finally, to gain insight into the coherence properties dis-
cussed above, we present the analytical expression for the
correlation function g(2)(0):

g(2)(0) =
∣∣∣∣∣1 − 1

N

(
λ

�̃QE/N

)2
(
�̃QE + iNγ r

QE/2
)
λ2(

�̃QE + iγ r
QE/2

)(
�̃2

C + �̃C�̃QE − Nλ2
) − λ2�̃C(N − 1)

∣∣∣∣∣
2

, (15)

which can be also obtained by taking μQE → 0 in Eq. (13).
Again, this expression yields g(2)(0) = 1 when N → ∞, so
the classical behavior is recovered in this limit. Note as well
that we find g(2)(0) = 1 at the resonant frequency ωL = ω0

when all losses are neglected.

B. Two different mechanisms leading to sub-Poissonian light

Studying photon correlations in coupled systems, we have
identified two types of sub-Poissonian emission appearing in
both nanocavities and microcavities. In order to shed light into
their different nature, we proceed in this section to examine
their emergence in more detail. In Fig. 5, the focus is on
the photon blockade effect, which takes place close to the
polarition energies of the one-excitation manifold, whereas in
Fig. 6 we study the sub-Poissonian emission associated with
destructive interference, which appears for moderate coupling
strength in the region of zero detuning. The population, the

intensity I , and the correlation functions G(2)(0) and g(2)(0)
are plotted as a function of the laser detuning ωL − ω0 for
nanocavities (left-hand-side panels) and microcavities (right-
hand-side panels) at specific coupling strengths to explore
these processes.

1. Photon blockade

The sub-Poissonian emission due to the photon block-
ade effect originates from the anharmonicity of the Tavis-
Cummings ladder, as we have commented before. When the
laser has an energy close to that of one of the polaritons at
the one-excitation manifold, the population of this particular
hybrid state increases. In Figs. 5(a1) and 5(b1), populations are
plotted in the basis of the dressed states. There, the continuous
colored lines, corresponding to the population of the UP
(dark pink) and the LP (light pink), experience an increase
when the laser frequency is tuned to be in the vicinity of the
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(a2)

(a3)

(a4)

(a1)

(b2)

(b3)

(b4)

(b1)

FIG. 5. Population [in the polariton basis (first row) and in the cavity-emitters basis (second row)], intensity I , and correlation functions
G(2)(0) and g(2)(0) versus laser detuning ωL − ω0 for a system of N = 5 quantum emitters coupled to a nanocavity (a) and a microcavity (b) at
coupling strength λ/γC = 2 (for which the photon blockade effect appears). In these panels, continuous vertical gray lines indicate the polariton
frequencies in the one-excitation manifold, while the dashed ones represent the energy differences between the state of one LP and one UP
(belonging to the two-excitation manifold) and the state with either one LP (left dashed line) or one UP (right dashed line).

corresponding polariton frequency (continuous vertical gray
lines). Nevertheless, for these specific energies, the laser is out
of resonance for promoting the state from the one- to the two-
excitation manifold (dashed vertical gray lines depict these
energy differences). This diminishes the probability of emis-
sion of two simultaneous photons, leading to sub-Poissonian
statistics. These panels also show, in dashed colored lines,
the populations of the states belonging to the two-excitation
manifold: two LPs (light pink), one LP and one UP (very light
gray), and two UPs (dark pink). Note that the maxima of these
curves are not located exactly at the polariton frequencies. They
are slightly shifted as a consequence of the energy differences
between the one- and the two-excitation manifolds.

When the populations are expressed in terms of the cavity
and emitter states, Figs. 5(a2) and 5(b2), all curves belonging to
the same subspace (continuous or dashed lines for the one- and
two-excitation manifolds, respectively) seem to converge to the
same value at the frequencies where the photon blockade phe-

nomenon takes place (that is, near the polariton frequencies).
Apart from that, we observe that there exist two clear minima
in the population curves corresponding to the state with one
(continuous dark blue line) and two (dashed dark blue line)
excitations in the cavity. Each of them has a replica in one of
the curves depicted in Figs. 5(a3) and 5(b3). This is especially
visible for the nanocavities where these two minima do not
coincide. Indeed, the intensity (yellow line) and the G(2)(0)
(ocher line) functions reproduce the form of the populations
of the states with one and two excitations in the cavity mode,
respectively. The origin of this correspondence is clear for the
closed configuration (as only the emission from the cavity is
detected). For the open one, it results from the fact that the
dipole moment of the cavity is greater than the collective dipole
of the emitter ensemble. Thus, the former contributes the most
to the emitted light (for a reduced number of emitters). Note
that intensity accounts for one-photon processes, while G(2)(0)
reflects from two-photon processes instead [Eq. (10)].
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FIG. 6. Population (in the cavity-emitters basis), intensity I , and correlation functions G(2)(0) and g(2)(0) versus laser detuning ωL − ω0 for
a system of N = 5 quantum emitters coupled to a nanocavity (a) and a microcavity (b) at coupling strengths λ/γC = 0.2 and 0.1, respectively
(for which the interference-induced correlations appear).

The intensity plots reflect the presence of the polariton ener-
gies as well: each scattering peak coincides with a maximum
in the polariton population and, naturally, with the position
of the polariton energy. The intensity minima are certainly
located between the two polariton energies, far from resonance.
The fact that the maxima in G(2)(0) are shifted from those
in the scattered intensity provokes the characteristic shape in
the normalized second-order correlation function, shown in
Figs. 5(a4) and 5(b4). Values of the g(2)(0) function below one
are located close to the polariton energies (vertical continuous
gray lines), whereas there appear two relative maxima at laser
frequencies that match energy differences between the one- and
the two-excitation manifolds (vertical dashed gray lines). For
the nanocavity, the different positions of I and G(2)(0) minima
in Fig. 5(a3) leads to maxima and a minima in g(2)(0) near
resonance, although the emission is always super-Poissonian
in this frequency window.

2. Interference-induced correlations

The decrease of g(2)(0) below one is referred to as
interference-induced correlations when its origin cannot be
explained in terms of the energy levels as done for the
photon blockade effect. On the contrary, it is produced by
the destructive interference between different available decay
paths [80–82].

The population curves [Figs. 6(a1) and 6(b1)] reveal that
it is a decrease in the population of the state corresponding
to two cavity-mode excitations (dashed dark blue lines) that
produces the minimum in the G(2)(0) function. It is then
transferred to the normalized g(2)(0) and, consequently, there
appears sub-Poissonian statistics in the vicinity of this laser
frequency. This correspondence between cavity population and
correlations is observed in both types of cavities, although
there exists a difference between them: whereas only one dip
takes place in nanocavities, two of them emerge in the case of
microcavities. Notice that this behavior differs from the photon
blockade mechanism, where a related fall in the population of
the state with two cavity-mode excitations is not observed (on
the contrary, as previously pointed out, all populations seem to
converge to the same value).

The intensity I and the correlation function G(2)(0) are
depicted in Figs. 6(a2) and 6(b2). As in the previous case, these
curves clearly follow the shape of the populations associated
with the states corresponding to one (continuous dark blue
lines) and two (dashed dark blue lines) excitations in the cavity
mode, respectively. The different position of the minima for
these two magnitudes is again responsible for the shape of
the g(2)(0) function. Nevertheless, now values below one are
reached (the interference-induced photon correlations). In
Fig. 5, the minimum in the G(2) did not lead to sub-Poissonian
statistics, although it did correspond to a minimum in g(2)(0).
Note that this fall was not so abrupt when compared with the
intensity dip.
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FIG. 7. Correlation function g(2)(0) versus laser detuning ωL − ωC and coupling strength λ (in units of the cavity decay rate γC) for a system
of N = 5 quantum emitters coupled to a nanocavity (top row) and a microcavity (bottom row) for various values of the detuning between cavity
and emitters, � = 1γC (a), 2 γC (b), and 3 γC (c). In these panels, dotted (dashed) lines plot the polariton frequencies (half-frequencies) in
the one-excitation (two-excitation) manifold. Horizontal pink lines and magenta marks in (c) panels indicate points whose g(2)(0) is plotted in
Fig. 9.

C. Effect of detuning between cavity and emitter frequencies on
the correlation function g(2)(0)

By means of the introduction of detuning between cavity
and emitter frequencies, the parameter range in which sub-
Poissonian statistics emerges can be enlarged: the spectral win-
dow becomes wider, and stronger couplings are required [54].
This is the tendency we observe in Fig. 7, where the cor-
relation function g(2)(0) is plotted versus the laser detuning
ωL − ωC and the coupling strength λ for various values of
the detuning � ≡ ωQE − ωC. There, the emitter frequencies
ωQE vary while the cavity mode resonance is always fixed to
be ωC = ω0 ≡ 3 eV. The case considered is that composed
of N = 5 quantum emitters coupled to either a nanocavity
(top row) or a microcavity (bottom row), hence, these would
correspond to Figs. 2(b2) and 4(b2), respectively, if no detuning
were present (that is, � = 0).

Figure 7 shows that, effectively, for both types of cavities
the region with interference-induced correlations spreads as
the difference in energy between cavity and emitters increases,
although this effect is more pronounced in microcavities.
Via detuning, the range of laser frequencies for which sub-
Poissonian emission is attainable broadens: it extends over a
frequency window with a width of almost half the detuning.

Focusing now on the vertical axis, we observe that for a
particular value of the coupling strength, it is possible to have
g(2)(0) < 1 near the resonant frequency just by increasing the
detuning between cavity and emitters. Furthermore, note that
the introduction of detuning makes it possible to achieve lower
values of g(2)(0), whereby improving the quantum character of
the emitted light. This is also true for the photon blockade effect
following the UP (since this is the dressed state with a greater
emitter contribution in this case), which deepens. For a better
visualization, the energies corresponding to the eigenvalues
of the dressed states are plotted in dotted (one-excitation
manifold) and dashed (two-excitation manifold) lines in all
panels. For both nanocavities and microcavities, the photon
blockade effect reinforces near the UP, whereas it fades at the
LP. For instance, when � = 3γC the photon blockade effect
following the lower branch disappears; no sub-Poissonian
emission takes place in its surroundings. Note that varying the
sign of the detuning, the roles of UP and LP are exchanged.

Regarding the region with interference-induced correla-
tions, there exists a particularity for the microcavity that is
worth mentioning: now we only observe one prevailing dip,
instead of two (as it was for the zero detuning case, � = 0).
As a consequence of the loss of symmetry, the dip closer to
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FIG. 8. Correlation function g(2)(τ ) for N quantum emitters interacting with either a nanocavity (a) or a microcavity (b) at resonance
(� = 0). In top panels, g(2)(τ ) is plotted versus the time delay τ (in units of the cavity time 1/γC) for three different ensemble sizes (N = 1,
5, and 25). Two different configurations (which correspond to the points indicated in Figs. 2 and 4) are selected. Continuous lines are used
for the antibunching related to the photon blockade effect while dotted lines are used for interference-induced correlations. In bottom panels,
g(2)(τ ) is plotted versus laser detuning ωL − ω0 and time delay τ (also in units of 1/γC) for an ensemble of N = 5 emitters and selecting two
different coupling strengths in each case: λ = 2γC (a2) and 0.2γC (a3) for plasmonic nanocavities and λ = 2γC (b2) and 0.1γC (b3) for dielectric
microcavities. In these bottom panels, vertical green lines correspond to the curves for N = 5 depicted at the top.

the emitter frequency becomes narrower, and the other one
widens, when the detuning increases. This makes the patterns
observed for g(2)(0) at a specific detuning � quite similar for
nanocavities and microcavities. Nevertheless, the energy range
is very different; note that the coupling strength λ is given
in units of the decay rate γC, and the values corresponding
to plasmonic (γC ∼ 0.1 eV) and dielectric (γC ∼ 0.1 meV)
cavities differ by around three orders of magnitude (as do the
laser detunings).

D. Dependence of the correlation function g(2)(τ )
on the time delay τ

In this section, we study the behavior of the second-
order correlation function g(2)(τ ) at nonzero time delays τ

for various configurations displaying sub-Poissonian statistics
[g(2)(0) < 1]. This allows to resolve whether the emitted light
is actually antibunched [g(2)(0) < g(2)(τ )]. In top panels of
Fig. 8, we plot g(2)(τ ) as a function of τ (in units of the
cavity lifetime 1/γC) for an ensemble of N quantum emitters
interacting with either a nanocavity (a) or a microcavity (b)
when there is no detuning between them (� = 0). We consider
three ensemble sizes N = 1 (yellow lines), 5 (green lines),
and 25 (blue lines), and select two different configurations
for each case: one belonging to the photon blockade area

(continuous lines) and the another displaying sub-Poissonian
statistics due to quantum interference effects (dotted lines). All
configurations are indicated in Figs. 2 and 4 through magenta
marks.

Focusing first on the continuous lines (photon blockade),
we observe that the correlation function approaches one almost
monotonically as the time interval τ increases, hence, we can
talk properly of photon antibunching. Nevertheless, there exist
some oscillations whose amplitude diminishes as the ensemble
size increases. Remarkably, there is practically no difference
between the behavior for nanocavities and microcavities once
the timescale is normalized by the cavity decay time 1/γC;
in both cases, the time evolution follows the same tendency,
and the degree of correlation reached from both effects is
similar. Note that all configurations have been chosen for a
coupling strength λ/γC = 2 for both types of cavities, although
the laser detuning varies in order to consider the minimum of
the g(2)(0) attainable at this coupling. These two sets of curves
also highlight that the degree of coherence is quickly lost when
increasing N .

Dotted lines show instead the evolution in τ for configu-
rations displaying interference-induced correlations. We first
observe that the degree of coherence at τ = 0 reached from
this effect is stronger than the associated with the photon
blockade mechanism, although the couplings are smaller: for
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(a2) (b2)

(b1)(a1)

FIG. 9. Correlation function g(2)(τ ) for an ensemble of N = 5 quantum emitters interacting with either a nanocavity (a) or a microcavity
(b) cavity when � = 3γC. In top panels, g(2)(τ ) is plotted versus laser detuning ωL − ωC and time interval τ (in units of the cavity time 1/γC)
for coupling strength λ = 0.5γC in (a) and λ = 0.8γC in (b). The cuts at τ = 0 correspond to the continuous pink lines depicted in Fig. 7(c).
Bottom panels show cuts of the contour plots on top at laser detunings yielding two minima in the g(2)(0) function. These specific configurations
are indicated by red lines in the top panels and by red markers in 7(c).

the nanocavity, λ/γC = 0.2, while for the microcavity it takes
the values λ/γC = 0.04, 0.1, and 0.3 for N = 1, 5, and 25,
respectively. Oscillations in the τ evolution of the function
g(2)(τ ) are observed as N increases, although we still have
antibunched light since g(2)(0) < g(2)(τ ). When comparing
nanocavities and microcavities, we observe that oscillations
in the latter are more pronounced. Moreover, note again the
difference in γC, which translates into the fact that the temporal
evolution is significantly faster in the plasmonic nanocavity (a
direct consequence of the spectrally broad character of photon
correlations in the system).

A more general picture is shown in the bottom row of Fig. 8,
where g(2)(τ ) is plotted as a function of the laser detuning
ωL − ω0 and the time delay τ (again in units of the cavity
time 1/γC) for a collection of N = 5 emitters also interacting
with either a nanocavity (a) or a microcavity (b) for specific
coupling strengths (see Fig. 8 caption). The particular values of
the laser detuning marked with vertical green lines (continuous
for photon blockade and dotted for interference-induced corre-
lations) correspond to the ones depicted in Figs. 8(a1) and 8(b1)
for N = 5. These contour plots show that oscillatory patterns
are also present for configurations displaying super-Poissonian
statistics at zero-time delay.

We have thus found that sub-Poissonian statistics is accom-
panied by antibunched light in the zero-detuning configura-

tions explored in Fig. 8. Although g(2)(τ ) approaches one as the
time delay increases, its evolution is far from monotonous for
interference-induced correlations: they present an oscillatory
pattern taking values above and below one before reaching the
coherent limit. This also happens when detuning between the
cavity frequency and the emitters is introduced. An example
is shown in the top row of Fig. 9, where the function g(2)(τ ) is
plotted for a particular coupling strength as a function of laser
detuning ωL − ωC, and the time delay τ (in units of 1/γC) for
N = 5 quantum emitters interacting with either a nanocavity
(a) or a microcavity (b). Here, we have considered a detuning
� = 3γC, so these plots correspond to horizontal cuts in the
panels of the third column of Fig. 7 (indicated by horizontal
pink lines), at λ/γC = 0.5 for plasmonic nanocavities and
λ/γC = 0.8 for dielectric microcavities. In these panels, for
most laser detunings, the correlation function develops an
oscillatory pattern as τ increases for both sub- and super-
Poissonian statistics at τ = 0. Again, the close similarity
between the patterns for both cavities is remarkable (once the
delay time is expressed in units of 1/γC).

We observe that there exists a significant difference in
the temporal dependence of negative correlations also once
detuning between cavity and emitters is introduced. This is
evident in the bottom panels of Fig. 9, where two specific
values of ωL − ωC are considered (indicated in Fig. 7 with
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magenta marks) in order to select configurations that display
sub-Poissonian statistics due to interference effects (dotted
line) and photon blockade (continuous line). These plots of
g(2)(τ ) versus the time delay correspond to vertical cuts in
Figs. 9(a1) and 9(b1) (see vertical red lines). In the case of
photon blockade, g(2)(τ ) approaches one monotonically as
the delay increases. In contrast, quantum interference leads to
an oscillatory pattern in correlations. Both retain a temporal
evolution similar to the one obtained at � = 0 in Fig. 8.
Note that even the temporal slope and pitch of oscillations
remain the same. Thus, by detuning cavity and emitters,
the opportunity to obtain sub-Poissonian light improves (as
we have mentioned before, the parameter regions widen)
without altering qualitatively its evolution with time delay
between photon detections. Again, the phenomenologies for
nanocavities and microcavities coincide, given that the values
of laser detuning and time delay, both normalized to the cavity
losses, are the same.

IV. CONCLUSIONS

This work investigates the statistical properties of the light
generated by a collection of quantum emitters coupled to a
single electromagnetic mode. Theoretical computations based
on an effective Hamiltonian approach have been carried out
to describe the response of two different systems under low-
intensity coherent driving: plasmonic nanocavities and dielec-
tric microcavities. Special attention has focused on exploring
the impact that the distinct open or closed character of these
two types of cavities has on the scattered light.

For both cavity configurations, sub-Poissonian emission has
been observed not only at the single-emitter level, but also for

mesoscopic ensembles involving several tens of emitters. Our
results show that there are two different mechanisms that yield
significant negative correlations in the interaction between a
purely bosonic subsystem (cavity) and a quasibosonic one
(emitter ensemble): photon blockade and destructive inter-
ference. The former takes place at high coupling strengths
(comparable to or larger than the cavity decay rate), while the
latter becomes relevant for weaker cavity-emitters interactions.
Despite their distinct open or closed character and the largely
different physical parameters describing nanocavities and
microcavities, the photon statistics phenomenology for both
systems is remarkably similar (once normalized to the cavity
losses). This fact becomes clearer through the exploration of
cavity-emitters spectral detuning, which enlarges the parame-
ter range yielding antibunched light, and the temporal evolution
of correlations, which reveals the slow (fast) fading of photon
blockade (interference-induced) antibunching. Our findings
may serve as guidance for the optimization of quantum optical
phenomena for specific applications through the appropriate
choice of material parameters for their implementation.
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