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Despite significant theoretical efforts devoted to studying the interaction between quantized light modes
and matter, the so-called ultrastrong coupling regime still presents significant challenges for theoretical
treatments and prevents the use of many common approximations. Here we demonstrate an approach that
can describe the dynamics of hybrid quantum systems in any regime of interaction for an arbitrary
electromagnetic (EM) environment. We extend a previous method developed for few-mode quantization of
arbitrary systems to the case of ultrastrong light-matter coupling, and show that even such systems can be
treated using a Lindblad master equation where decay operators act only on the photonic modes by
ensuring that the effective spectral density of the EM environment is sufficiently suppressed at negative
frequencies. We demonstrate the validity of our framework and show that it outperforms current state-of-
the-art master equations for a simple model system, and then study a realistic nanoplasmonic setup where
existing approaches cannot be applied.
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Light-matter interaction in the strong coupling regime in
which matter and electromagnetic (EM) modes hybridize
has enabled the manipulation of the physical and chemical
properties of hybrid light-matter systems at a quantum
level [1–7]. Typically, these are dissipative systems in which
the interaction with an external reservoir introduces irre-
versible dynamics such as decay of excitations by photon
emission. Such effects are customarily treated through
Lindblad master equations, in which baths are represented
by Lindblad dissipation terms [8–10]. These terms typically
act on the uncoupled components to, e.g., represent losses of
a cavity mode due to leakage through the mirrors. While it
has long been known that decay operators derived for an
uncoupled system can lead to unphysical effects in the
coupled system [11], their use often remains a reasonable
approximation. However, this fails in the ultrastrong cou-
pling (USC) regime where the coupling strength becomes a
significant fraction of the system transition frequencies,
which has been achieved in many physical systems ranging
from organic molecules in Fabry-Pérot cavities to super-
conducting qubit-oscillator circuits [12–22]. In this regime,
the commonly used rotating-wave approximation for light-
matter interaction breaks down, leading to entangled ground
stateswith virtual excitations and opening newopportunities
for nonlinear optics [23,24]. Decay operators in the
uncoupled basis then introduce unphysical effects such as
artificial emission from the ground state since they act on the
virtual excitations [25–27].
In order to mitigate these problems, decay operators

acting in the coupled or dressed basis have been derived

[26,28–30]. However, the price to be paid is that the system
Hamiltonian has to be diagonalized and that the decay
operators become significantly more complex. The use of
such approaches is thus restricted to simple cases where the
dynamics is dominated by a single lossy cavitymode and the
emitter has limited structure, while at the same time the use
of few-mode and few-state approximations in the ultrastrong
coupling regime becomes questionable [31–33]. Finally,
these methods still employ an underlying Born-Markov
approximation for the coupling of the system (emitter and
discrete mode) to the outside environment and are in this
respect similar to the standard Bloch-Redfield (BR) master
equation of open quantum systems [8,9].
In this Letter, we introduce a method for treating hybrid

quantum systems in the USC regime that works for
arbitrary EM environments, is independent of the properties
of the quantum emitter, and does not make any Markovian
approximation, while still maintaining the simple form of a
Lindblad master equation in which the dissipators are
simple decay terms for the “cavity” modes. We achieve
this by extending a recently developed approach [34,35] to
the case of extreme coupling between constituents or
with external baths. The crucial step relies on the fact
that the failure of the conventional approach can be
understood from the perspective of open quantum systems
theory [9,36,37] by realizing that a single lossy cavity mode
corresponds to an effective environment that contains
negative-frequency components (see Fig. 1). We demon-
strate that for an EM environment consisting of interacting
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modes [34,35], their interference in the coupling to the
emitter can suppress these negative-frequency components,
making it possible to avoid the artificial effects inherent in
the standard Lindblad master equation. We consider several
limiting cases, benchmarking our approach by comparing
with numerically exact solutions, and compare it to current
state-of-the-art methods. Finally, we illustrate the capability
of our method to go beyond simple ad hoc model systems
by considering the dynamics of an emitter placed in the hot
spot of a nanoplasmonic structure formed by a dimer of
silver spheres.
We start from the Hamiltonian describing the interaction

of an emitter with its EM environment (with ℏ ¼ 1 here and
below) [38,39]

H ¼ ωe

2
σz þ

Z∞

−∞

½ωa†ωaω þ
ffiffiffiffiffiffiffiffiffiffi
JðωÞ

p
ða†ω þ aωÞσx�dω; ð1Þ

where for simplicity we use a two-level emitter described
by Pauli operators σx and σz, with transition frequency ωe.
The operators aω (a†ω) are bosonic annihilation (creation)
operators for photon modes at frequency ω. The spectral
density JðωÞ encodes the full information about the EM
environment and its interaction with the emitter [36,37,39].
We apply a recently developed few-mode quantization

method based on replacing the EM system with an
equivalent model consisting of N lossy and interacting
modes [34,35]. Its dynamics are given by

Hmod ¼
ωe

2
σz þ

X
i;j

ωija
†
i aj þ

X
i

giða†i þ aiÞσx ð2aÞ

ρ̇ ¼ −i½Hmod; ρ� þ
X
i

κiLai ½ρ�; ð2bÞ

where LO½ρ� ¼ OρO† − 1
2
fO†O; ρg is a Lindblad dissipa-

tor, ωij encodes the mode energies and couplings, κi their

decay rates, and gi their coupling to the emitter. This model
is exactly equivalent to Eq. (1) with spectral density
JmodðωÞ ¼ ð1=πÞg⃗T · Im½ðH̃ − ωÞ−1� · g⃗, where H̃ij¼ωij −
ði=2Þδijκi [34,35]. By varying parameters ωij, κi, and gi,
the model can be adjusted to obtain a spectral density as
close as desired to the original problem by performing a
nonlinear fit of JmodðωÞ to the physical spectral density
JðωÞ for a sufficient number of modes N (see details in the
Supplemental Material [40]).
The single-mode case N ¼ 1 of Eq. (2) is the conven-

tional quantum Rabi model [44,45], and thus corres-
ponds to a Lorentzian spectral density JlorðωÞ ¼
ðg2=πÞfðκ=2Þ=½ðωc − ωÞ2 þ κ2=4�g [34,46,47], where ωc
is the mode frequency and κ its decay rate. In contrast to
physical spectral densities, JlorðωÞ is nonzero along the
whole real axis, including for negative frequencies. Since
counterrotating coupling terms aσ−, a†σþ are resonant at
negative frequencies (where σ� are Pauli jump operators,
with σx ¼ σþ þ σ−), and the emission of negative-energy
quanta corresponds to the absorption of energy by the
system, this viewpoint provides a simple intuitive expli-
cation for the artificial pumping observed when cavity
decay is described with a Lindblad term and the rotating-
wave approximation is not performed. At the same time, it
provides a natural recipe for preventing such effects:
Ensuring that the spectral density at negative frequencies
is sufficiently small. While this is not possible for non-
interacting modes (corresponding to a sum of Lorentzians),
we show below that interactions can enable destructive
interference between the modes that allows this to be
achieved even with a relatively small number of modes.
As a first test case, we study a single-mode setup

corresponding to a physically allowed extension of the
quantum Rabi model. This is obtained by coupling a single
mode to an Ohmic “background” bath, corresponding to
one of the most well-studied models in the context of
friction and open quantum systems [26,27,30,48]. The
effective spectral density of the full EM environment is
then given by [48]

JsmðωÞ ¼ θðωÞ 2g
2

π

κωcω

ðω2
c − ω2Þ2 þ κ2ω2

; ð3Þ

where θðωÞ is the Heaviside theta function. This expression
fulfills the physical constraints for EM spectral densities: It
only contains positive-frequency components and it tends
to zero for ω → 0. We note that it can also be obtained as an
antisymmetrized extension of the Lorentzian spectral den-
sity, i.e., JsmðωÞ ¼ θðωÞ½JlorðωÞ − Jlorð−ωÞ� (with a small
renormalization of the parameters). We choose parameters
typical for Landau polaritons formed in semiconductor
quantum wells in the USC regime [21,22,24], with values
ωc ¼ ωe ¼ 0.58, g ¼ 0.25, and κ ¼ 0.1 meV. The corre-
sponding spectral density is shown in Fig. 2(a), together
with fits using either a single Lorentzian or 10 interacting

FIG. 1. A realistic spectral density at zero temperature and its
Lorentzian approximation, corresponding to a single-mode Lind-
blad master equation. The tail at negative frequencies causes
artificial pumping of energy into the emitter, leading to incorrect
dynamics.
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modes and including the additional suppression at negative
frequencies. We compare various approaches to calculate
the population dynamics of an initially excited emitter in
Fig. 2(b): (i) The single-mode Lindblad master equation,
(ii) a BR master equation (for which the Ohmic bath
coupling to the “main” mode is treated perturbatively),
(iii) the generalized master equation (GME) introduced
in Ref. [30], and (iv) our approach with a collection of
interacting modes. As expected, the single-mode Lindblad
equation significantly overestimates the steady-state pop-
ulation due to the presence of artificial pumping.
Comparison with “exact” (i.e., numerically converged)
results obtained through direct discretization [40] demon-
strates that our approach produces converged results within
the linewidth of the figure. Both the GME and BR
approaches produce similar results that are relatively close
to the exact ones, but show clearly visible deviations at later
times (after 40 ps). We attribute this to the Markov

approximation for the coupling between the main cavity
mode and its background bath inherent in these approaches.
In order to quantify the accuracy of the different

methods, in Fig. 3 we show the relative error in the emitter
population (compared to the exact numerical solution) for
the different approaches. The BR and GME methods
contain no free parameters and thus provide no way to
systematically improve the approximation. Their time-
dependent relative error in the emitter population is shown
in the inset of Fig. 3, with its value averaged over the
propagation time indicated by the arrows in the main figure
(see Ref. [40] for details). In contrast, the fitting-based
approach introduced here permits us to choose a tradeoff
between accuracy and complexity of the model by choos-
ing the number of modes as well as the threshold value
below which we require the spectral density at negative
frequencies to be suppressed. The behavior of the method is
demonstrated for the cases of N ¼ 3, N ¼ 5, and N ¼ 10
modes. When the threshold is set relatively high, the error is
dominated by the artificial pumping and somewhat inde-
pendent of the number of modes used for fitting, although
we note that even for the largest threshold values consid-
ered here, the errors in our approach are comparable to the
ones of the GME and BR methods. Decreasing the thresh-
old initially leads to a significant reduction in the error for
any number of modes. However, the error increases again at
some point as the threshold is decreased, essentially
because the fit quality in the positive-frequency compo-
nents cannot be maintained when the constraints at negative
frequencies are too stringent. This can be mitigated by
increasing the number of modes in the fit, with N ¼ 10
modes providing enough flexibility in the current case to
maintain accuracy even at the smallest threshold values we

FIG. 2. (a) The spectral density of the system under study.
Black dashed line represents the preset threshold value for model
spectral density at negative frequencies. Gray lines show the real
part of the complex resonances of the model spectral density, and
the brown dotted line indicates the emitter transition frequency.
(b) The population of the two-level emitter interacting with
photonic environment in the USC regime for different methods.

FIG. 3. Average relative error of the emitter population dynam-
ics obtained with our approach for a different number of modes
involved into fitting. Red and green arrows show the error of GME
and BR master equations. In inset: time dependence of relative
error. Orange, red, and green lines represent results for our
approach (with 10 modes at the threshold value ¼ 10−8 meV),
GME, and BR master equation, respectively.
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set [JðωÞ ≤ 10−8 meV for ω < 0]. The remaining error of
our approach for threshold values< 10−6 meV is due to the
error level of the fit, with a small uncertainty in the
estimation due to imperfect convergence of the exact
discretization method (see Supplemental Material [40]
for details). We note that even for 3 modes, the optimal
accuracy of our approach is considerably higher than that of
the BR and GME methods.
Next, we demonstrate the implementation of our model

in a nanophotonic structure with a more complex spectral
density: a dimer of silver spheres (radius 15 nm) with a
1 nm gap between them, embedded in a GaP matrix
(ϵ ¼ 9). Such nanogap geometries provide the strongest
available single-emitter light-matter coupling in the optical
regime [49–54]. Here, we study the excited-state popula-
tion of a two-level quantum emitter placed in the center of
the gap between the spheres. The emitter has a transition
frequency ωe ¼ 2.4 eV and dipole moment μ ¼ 20 D
oriented along the line connecting the centers of the
spheres, which are typical parameters for organic molecules
or quantum dots. Using the boundary element method
implemented in SCUFF-EM [55], we computed the dyadic
EM Green function of the structure, which determines its
spectral density [39].
The spectral density, shown in Fig. 4(a), consists of

several localized surface plasmon resonances of various
multipolar orders. This already implies that the number of
required modes for an accurate fit will be significantly
larger than in the simplified models treated up to now. The
high-permittivity dielectric background redshifts these
resonances compared to the free-space situation, which
is challenging to fit since the target spectral density shows a
significant gradient close to zero frequency. The mentioned
factors along with the desired strong suppression of
Jmodðω < 0Þ lead to the necessity of using 28 modes to
achieve an accurate fit of JðωÞ. In this case, a comparison
with single-mode models is not feasible as they cannot
adequately describe the system dynamics. Furthermore,
extending dressed master equations to multiple modes
poses a significant numerical challenge. Indeed, both the
GME and BR methods lead to equations of motion that are
numerically quite dense (i.e., almost all elements of the
matrix describing the Liouvillian superoperator are non-
zero). In contrast, the Lindblad operators in our method are
numerically sparse due to the use of the original uncoupled
basis, limiting the numerical cost of implementation (see
the Supplemental Material [40] for details). Therefore,
instead of comparing our method to existing master
equations, we compare it with a fit where the negative
frequency range is ignored and only the resonance peaks (in
the frequency range between 0.7 and 4 eV) are fitted. For
this simpler situation, the fit is already well converged with
12 modes.
The emitter frequency ωe is resonant with the pseudo-

mode formed by overlapping high-order surface plasmon

modes [51,56], i.e., close to the peak of the spectral density.
We show the emitter population after initial excitation in
Fig. 4(b). After several oscillations due to interaction with
the complex EM environment, it gradually decreases to
zero while undergoing several further oscillations. Our
method again provides essentially perfect agreement with
the numerically exact discretization method. Moreover, we
note that it is essential to include the suppression of the
spectral density at negative frequencies to obtain converged
results when counter-rotating coupling terms are included.
The fit that ignores the negative frequencies leads to
considerable deviations in the dynamics. As in the previous
cases, the differences between the results of our approach
for broad and narrow spectral ranges are caused by artificial
pumping and, notably, are most pronounced at long times.
In contrast, the oscillatory dynamics at short times is
represented correctly in both cases since it is principally

FIG. 4. (a) The spectral density of the considered system. Black
dashed line represents the preset threshold value for the model
spectral density at negative frequencies and the brown dotted line
indicates the emitter transition frequency. (b) Emitter population
as a function of time for the numerically exact and our approach
applied for narrow [(0.7; 4) eV] and broad [ð−5; 5Þ eV] spectral
windows. In inset: The total number of photons accumulated in
the system and bath modes.
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determined by the interaction between the emitter and the
resonant region of the spectral density.
In addition to emitter population, in the inset of Fig. 4(b),

we show the time-dependent total number of photons in the
system and bath modes. The exact dynamics demonstrates
that the steady-state photon number slightly exceeds unity.
This is a consequence of the importance of the counter-
rotating terms, which lead to the (virtual) excitation of the
cavity modes in the coupled system even in the ground
state. Since the decay operators in our approach are of a
Lindblad form, the population of the bath modes can be
easily tracked as PbathðtÞ ¼

P
N
i¼1

R
t
0 κiha†i aiiðt0Þdt0. If the

fit is performed only at positive frequencies without taking
the suppression at negative frequencies into account, this
results in a linear increase in the photon number at long
times due to the continued artificial pumping through
emission of (negative-frequency) photons from the ground
state. In contrast, the result of our approach for the extended
spectral region perfectly follows the trend of the numeri-
cally exact results. This shows that even though the discrete
modes in the fit are in some sense arbitrary, their combi-
nation not only provides the correct emitter dynamics, but
also correctly reproduces the temporal behavior of the
photon number.
We furthermore note that the steady state reached by the

hybrid system becomes essentially pure when the artificial
pumping is sufficiently suppressed. In the case of the
extended spectral range, the steady-state density matrix ρs
is highly pure, 1 − Trðρ2sÞ < 10−3, meaning that ρs can be
expressed to a good approximation as describing a pure
quantum state ρs ≈ jψ0ihψ0j. Furthermore, jψ0i corre-
sponds to the eigenstate of the Hamiltonian with the
smallest number of excitations. This is a consequence of
the fact that the steady state is simply the ground state of the
full system, which is unaffected by the decay terms in the
master equation. The steady state could thus be obtained
from just the Hamiltonian without having to invoke the
Lindblad master equation.
To conclude, we have demonstrated a powerful method

able to reproduce dynamics of a quantum system interact-
ing with an arbitrary EM environment in any coupling
regime by exploiting the mapping between nanophotonic
spectral densities and Lindblad-form master equations
[34,35]. By suppressing the spectral density at negative
frequencies, artificial effects inherent to standard Lindblad
forms can be removed. Based on this physical intuition, we
demonstrate how to systematically improve the perfor-
mance of the proposed approach for a hybrid system in the
USC regime. For simple model systems, we showed that
the accuracy of our approach considerably exceeds the one
of state-of-the-art master equations. Furthermore, the
approach can deal with realistic nanophotonic systems
where simple models are not available. It thus offers a
straightforward way for investigating extreme regimes of
light-matter interaction while taking into account the full
mode spectrum of complex EM environments.

We acknowledge support by the European Research
Council through Grant No. ERC-2016-STG-714870,
by the Spanish Ministry for Science, Innovation,
and Universities—Agencia Estatal de Investigación
(AEI) through Grants No. PID2021-125894NB-I00,
No. CEX2018-000805-M (through the María de Maeztu
program for Units of Excellence in Research and
Development), and No. PRE2021-098978 (to M. L. with
support from ESF+), by the Comunidad de Madrid through
Proyecto Sinérgico CAM 2020 Y2020/TCS-6545
(NanoQuCo-CM) and by the “(MAD2D-CM)-UAM7”
project funded by the Comunidad de Madrid, by the
Recovery, Transformation and Resilience Plan from
Spain, and byNextGenerationEU from the EuropeanUnion.

*Corresponding author: johannes.feist@uam.es
[1] F. J. Garcia-Vidal, C. Ciuti, and T.W. Ebbesen, Manipulat-

ing matter by strong coupling to vacuum fields, Science 373,
eabd0336 (2021).

[2] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P.
Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H.
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